Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides new kidney cancer clues

20.01.2011
Gene mutated in 1 in 5 patients with common form of renal cancer

In a collaborative project involving scientists from three continents, researchers have identified a gene that is mutated in one in three patients with the most common form of renal cancer. The gene – called PBRM1 – was found to be mutated in 88 cases out of 257 clear cell renal cell carcinomas (ccRCC) analysed, making it the most prevalent to be identified in renal cancer in 20 years.

The identification of a frequently mutated gene provides new insights into the biology of the disease, which will be critical in the continued effort to improve treatment for renal cancer. The study, published today in the journal Nature, was carried out by researchers from the Wellcome Trust Sanger Institute (UK), the National Cancer Centre of Singapore, and Van Andel Research Institute (VARI) of Grand Rapids, Michigan.

Renal cancer is among the 10 most common cancers in both men and women in the United States, striking nearly 60,000 Americans in 2010, and killing more than 13,000, according to the National Cancer Institute.

Renal cell carcinoma (RCC) accounts for 9 out of 10 kidney cancers, and ccRCC is the most common subtype, accounting for 8 out of 10 RCC cases. Survival rates for early-detected ccRCC tumors can be as high as 95 percent, but that prognosis falls over time as tumors develop. Diagnosis is complicated by the fact that tumors can grow in the kidney for some time without presenting symptoms.

For many years, the main genetic determinant known to be involved in the development of renal carcinoma was mutation of the VHL gene on chromosome 3.

"Until recently, when we talked about the genetics of renal carcinoma we would inevitably be talking about VHL – a gene mutated in eight out of ten patients," said Dr. Andy Futreal, Head of Cancer Genetics and Genomics and co-Head of the Cancer Genome Project at the Wellcome Trust Sanger Institute. "But we knew this was likely not to be the full story – so the question we have sought to answer is which genes are conspiring with VHL to cause the disease we see in patients?"

"Over the last year or so, we have started to assemble that puzzle – this research provides a new and critical piece."

The team's recent work had previously identified three mutated genes associated with renal cancer. These genes are all involved in altering part of the scaffold – known as chromatin – that holds the DNA together in our cells and can influence gene activity.

"Our understanding of how kidney cancer develops had already markedly improved through identification of three new mutated cancer genes, each of which makes a small contribution to the disease" said Professor Mike Stratton, Director of the Sanger Institute and co-Head of the Cancer Genome Project. "Now, our discovery of PBRM1 mutations in one in three kidney cancers is a major advance. We think we may have an almost complete understanding of the set of abnormal genes that drive this cancer and our understanding of the disease has been transformed by the realisation that most of these genes are involved in providing the structure that encases DNA in the cell and that regulates its function. This insight will provide us with many new therapeutic directions for this cancer."

Much of the story, the researchers suggest, seems to be locked into a small region of chromosome 3. The study finds that PBRM1(also known as Baf180) is tied together with two previously identified renal cancer genes – including the well-established VHL cancer gene and the recently identified gene SETD2 – on a small region of chromosome 3.

The team suggests that the fact that the genes are linked in their location allows cancer to exploit our biology – by reducing the number of genetic events needed to hit and inactivate all three genes. The team found a significant level of overlap, with many patients carrying mutations in two, if not all three of the genes in this region.

"This study has begun to unlock the way these latest gene discoveries contribute to cancer," said Professor Bin Tean Teh, M.D., Ph.D., Head of the Van Andel Research Institute Laboratory for Cancer Genetics and the NCSS-VARI Translational Research Laboratory at the National Cancer Centre of Singapore. "And it is to the cancer's advantage that they sit together. The challenge for the future will be to build a picture of the processes the genes control. That will mean looking beyond the linear DNA code to the chemical interactions that take place at the structural level – at the level of the chromosome."

Importantly, the newly discovered gene, PBRM1, functions as part of a protein complex called SWI-SNF, which also acts to alter the structure of chromatin – further pointing to the importance of genome regulation in renal cancer.

"Our work provides evidence that PBRM1 may affect the processes of cell division in renal cells. Therefore, a defect in this gene could lead to abnormal cellular growth," said Kyle Furge, Ph.D., Head of VARI's Laboratory of Computational Biology. "For researchers, this discovery is exciting because PBRM1 is a protein that modifies the DNA in the cell. This study is one of the first to show that proteins that modify DNA are frequently mutated in cancer."

The mutations all appear to inactivate a protein that plays a role in remodelling the structure of the genetic material, allowing access of the DNA code to other proteins that can repair damage, control cell growth and turn other genes on and off.

In addition to the PBRM1 mutations, the team also found mutations in a gene called ARID1A in some ccRCC cases. The same gene was identified just weeks ago in clear cell ovarian cancer. The researchers suggest that further larger-scale research will be needed to understand what role this second gene plays in renal cancer.

Notes to Editors

Publication Details

Varela I et al. (2010) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature.

Published online before print at doi: 10.1038/nature09639

Funding

This work was supported by the Wellcome Trust, the Van Andel Research Institute, the Lee Foundation, Cancer Research UK, the University of Cambridge and a fellowship from The International Human Frontier Science Program Organization.

Participating Centers

Cancer Genome Project, Bioinformatics and Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
NCCS-VARI Translational Research Laboratory, National Cancer Centre Singapore, Singapore
Masonic Cancer Center, University of Minnesota, Minneapolis, USA
Bioinformatics and Statistics, Department of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Génétique Oncologique EPHE-INSERM U753, Faculté de Médecine Paris-Sud and Institut de Cancérologie Gustave Roussy, 94805 Villejuif and Centre Expert National Cancer Rares INCa "PREDIR", Service d'Urologie, Hôpital de Bicêtre, AP-HP, 94276 Le Kremlin- Bicêtre, France
Department of Urology, Spectrum Health Hospital, Grand Rapids, Michigan, USA
Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, Robinson Way, Cambridge, UK
Institut für Theoretische Physik, Universität zu Köln, Köln, Germany
Laboratory of Computational Biology and Laboratory of Cancer Genetics at Van Andel Research Institute, Grand Rapids, Michigan, USA
Laboratory of Cancer Therapeutics, DUKE-NUS Graduate Medical School, Singapore
Institute of Cancer Research, Sutton, Surrey, UK
The National Cancer Centre Singapore (NCCS) is at the forefront of cancer treatment and research. It offers its patients hope by providing the best care, by having the best people and by doing the best research. Designed to provide integrated and holistic patient-centred clinical services, it allows crossconsultation among oncologists of different specialities. Its holistic approach not only provides comprehensive multi-disciplinary cancer care but also develops public cancer education programmes and spearheads cutting-edge clinical and translational research in the understanding, prevention, diagnosis and treatment of cancer. http://www.nccs.com.sg/

About Van Andel Institute

Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona. http://www.vai.org

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>