Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides new kidney cancer clues

20.01.2011
Gene mutated in 1 in 5 patients with common form of renal cancer

In a collaborative project involving scientists from three continents, researchers have identified a gene that is mutated in one in three patients with the most common form of renal cancer. The gene – called PBRM1 – was found to be mutated in 88 cases out of 257 clear cell renal cell carcinomas (ccRCC) analysed, making it the most prevalent to be identified in renal cancer in 20 years.

The identification of a frequently mutated gene provides new insights into the biology of the disease, which will be critical in the continued effort to improve treatment for renal cancer. The study, published today in the journal Nature, was carried out by researchers from the Wellcome Trust Sanger Institute (UK), the National Cancer Centre of Singapore, and Van Andel Research Institute (VARI) of Grand Rapids, Michigan.

Renal cancer is among the 10 most common cancers in both men and women in the United States, striking nearly 60,000 Americans in 2010, and killing more than 13,000, according to the National Cancer Institute.

Renal cell carcinoma (RCC) accounts for 9 out of 10 kidney cancers, and ccRCC is the most common subtype, accounting for 8 out of 10 RCC cases. Survival rates for early-detected ccRCC tumors can be as high as 95 percent, but that prognosis falls over time as tumors develop. Diagnosis is complicated by the fact that tumors can grow in the kidney for some time without presenting symptoms.

For many years, the main genetic determinant known to be involved in the development of renal carcinoma was mutation of the VHL gene on chromosome 3.

"Until recently, when we talked about the genetics of renal carcinoma we would inevitably be talking about VHL – a gene mutated in eight out of ten patients," said Dr. Andy Futreal, Head of Cancer Genetics and Genomics and co-Head of the Cancer Genome Project at the Wellcome Trust Sanger Institute. "But we knew this was likely not to be the full story – so the question we have sought to answer is which genes are conspiring with VHL to cause the disease we see in patients?"

"Over the last year or so, we have started to assemble that puzzle – this research provides a new and critical piece."

The team's recent work had previously identified three mutated genes associated with renal cancer. These genes are all involved in altering part of the scaffold – known as chromatin – that holds the DNA together in our cells and can influence gene activity.

"Our understanding of how kidney cancer develops had already markedly improved through identification of three new mutated cancer genes, each of which makes a small contribution to the disease" said Professor Mike Stratton, Director of the Sanger Institute and co-Head of the Cancer Genome Project. "Now, our discovery of PBRM1 mutations in one in three kidney cancers is a major advance. We think we may have an almost complete understanding of the set of abnormal genes that drive this cancer and our understanding of the disease has been transformed by the realisation that most of these genes are involved in providing the structure that encases DNA in the cell and that regulates its function. This insight will provide us with many new therapeutic directions for this cancer."

Much of the story, the researchers suggest, seems to be locked into a small region of chromosome 3. The study finds that PBRM1(also known as Baf180) is tied together with two previously identified renal cancer genes – including the well-established VHL cancer gene and the recently identified gene SETD2 – on a small region of chromosome 3.

The team suggests that the fact that the genes are linked in their location allows cancer to exploit our biology – by reducing the number of genetic events needed to hit and inactivate all three genes. The team found a significant level of overlap, with many patients carrying mutations in two, if not all three of the genes in this region.

"This study has begun to unlock the way these latest gene discoveries contribute to cancer," said Professor Bin Tean Teh, M.D., Ph.D., Head of the Van Andel Research Institute Laboratory for Cancer Genetics and the NCSS-VARI Translational Research Laboratory at the National Cancer Centre of Singapore. "And it is to the cancer's advantage that they sit together. The challenge for the future will be to build a picture of the processes the genes control. That will mean looking beyond the linear DNA code to the chemical interactions that take place at the structural level – at the level of the chromosome."

Importantly, the newly discovered gene, PBRM1, functions as part of a protein complex called SWI-SNF, which also acts to alter the structure of chromatin – further pointing to the importance of genome regulation in renal cancer.

"Our work provides evidence that PBRM1 may affect the processes of cell division in renal cells. Therefore, a defect in this gene could lead to abnormal cellular growth," said Kyle Furge, Ph.D., Head of VARI's Laboratory of Computational Biology. "For researchers, this discovery is exciting because PBRM1 is a protein that modifies the DNA in the cell. This study is one of the first to show that proteins that modify DNA are frequently mutated in cancer."

The mutations all appear to inactivate a protein that plays a role in remodelling the structure of the genetic material, allowing access of the DNA code to other proteins that can repair damage, control cell growth and turn other genes on and off.

In addition to the PBRM1 mutations, the team also found mutations in a gene called ARID1A in some ccRCC cases. The same gene was identified just weeks ago in clear cell ovarian cancer. The researchers suggest that further larger-scale research will be needed to understand what role this second gene plays in renal cancer.

Notes to Editors

Publication Details

Varela I et al. (2010) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature.

Published online before print at doi: 10.1038/nature09639

Funding

This work was supported by the Wellcome Trust, the Van Andel Research Institute, the Lee Foundation, Cancer Research UK, the University of Cambridge and a fellowship from The International Human Frontier Science Program Organization.

Participating Centers

Cancer Genome Project, Bioinformatics and Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
NCCS-VARI Translational Research Laboratory, National Cancer Centre Singapore, Singapore
Masonic Cancer Center, University of Minnesota, Minneapolis, USA
Bioinformatics and Statistics, Department of Molecular Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
Génétique Oncologique EPHE-INSERM U753, Faculté de Médecine Paris-Sud and Institut de Cancérologie Gustave Roussy, 94805 Villejuif and Centre Expert National Cancer Rares INCa "PREDIR", Service d'Urologie, Hôpital de Bicêtre, AP-HP, 94276 Le Kremlin- Bicêtre, France
Department of Urology, Spectrum Health Hospital, Grand Rapids, Michigan, USA
Li Ka Shing Centre, Cambridge Research Institute, Cancer Research UK, Robinson Way, Cambridge, UK
Institut für Theoretische Physik, Universität zu Köln, Köln, Germany
Laboratory of Computational Biology and Laboratory of Cancer Genetics at Van Andel Research Institute, Grand Rapids, Michigan, USA
Laboratory of Cancer Therapeutics, DUKE-NUS Graduate Medical School, Singapore
Institute of Cancer Research, Sutton, Surrey, UK
The National Cancer Centre Singapore (NCCS) is at the forefront of cancer treatment and research. It offers its patients hope by providing the best care, by having the best people and by doing the best research. Designed to provide integrated and holistic patient-centred clinical services, it allows crossconsultation among oncologists of different specialities. Its holistic approach not only provides comprehensive multi-disciplinary cancer care but also develops public cancer education programmes and spearheads cutting-edge clinical and translational research in the understanding, prevention, diagnosis and treatment of cancer. http://www.nccs.com.sg/

About Van Andel Institute

Established by Jay and Betty Van Andel in 1996, Van Andel Institute (VAI) is an independent research and educational organization based in Grand Rapids, Mich., dedicated to preserving, enhancing and expanding the frontiers of medical science, and to achieving excellence in education by probing fundamental issues of education and the learning process. VARI, the research arm of VAI, is dedicated to probing the genetic, cellular and molecular origins of cancer, Parkinson and other diseases and working to translate those findings into effective therapies. VARI is affiliated with the Translational Genomics Research Institute, (TGen), of Phoenix, Arizona. http://www.vai.org

The Wellcome Trust Sanger Institute, which receives the majority of its funding from the Wellcome Trust, was founded in 1992. The Institute is responsible for the completion of the sequence of approximately one-third of the human genome as well as genomes of model organisms and more than 90 pathogen genomes. In October 2006, new funding was awarded by the Wellcome Trust to exploit the wealth of genome data now available to answer important questions about health and disease. http://www.sanger.ac.uk

The Wellcome Trust is a global charitable foundation dedicated to achieving extraordinary improvements in human and animal health. We support the brightest minds in biomedical research and the medical humanities. Our breadth of support includes public engagement, education and the application of research to improve health. We are independent of both political and commercial interests. http://www.wellcome.ac.uk

Joe Gavan | EurekAlert!
Further information:
http://www.vai.org

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>