Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research investigates whether solar events could trigger birth defects on Earth

21.07.2015

Studies find airplane crews at high altitude are exposed to potentially harmful levels of radiation from cosmic rays.

"Neutrons which don't reach the ground do reach airline altitude," said Adrian Melott, professor of physics and astronomy at the University of Kansas. "Flight crews get a lot more radiation dose from neutrons. In fact, during solar particle events, airplanes are diverted away from the North Pole, where a lot more cosmic rays come down."


This image shows air showers ensuing from very-high-energy cosmic rays which can enter Earth's atmosphere from multiple directions.

Credit: Simon Swordy/NASA

But could these cosmic rays pose hazards even at sea level? In recent years, research has suggested congenital birth defects down on Earth's surface could be caused by these "solar particle events" -- spikes in cosmic rays from the sun that touch off the northern lights and sometimes hamper communications or the electric power grid.

Now, a new NASA-funded investigation has found radiation from solar events is too weak to cause worry at ground level. Results have just been published in the Journal of Geophysical Research and hailed as one of three "Editor's Choice" publications for the first quarter of 2015 by Space Weather.

"We looked at two different studies," said co-author Melott. "Both of them indicated a connection between cosmic rays and the rate of birth defects. One also associated mutations in cells growing in a petri dish with a 1989 solar particle event."

But Melott and colleagues Andrew C. Overholt of MidAmerica Nazarene University and Dimitra Atri of the Blue Marble Space Institute of Science have calculated the dose of radiation from a solar particle event to be less than a visit to the doctor might necessitate.

"We have a contradiction," Melott said. "Our estimates suggest that the radiation on the ground from these solar events is very small. And yet the experimental evidence suggests that something is going on that causes birth defects. We don't understand this, which is good. Something one doesn't understand is a pointer to an interesting scientific problem."

Melott and his co-authors looked at how cosmic rays from the sun create hazardous "secondaries" by reacting with the Earth's atmosphere.

"Cosmic rays are mostly protons," he said. "Basically, they are the nuclei of atoms -- with all the electrons stripped off. Some come from the sun. Others come from all kinds of violent events all over the universe. Most of the ones that hit the Earth's atmosphere don't reach the ground, but they set off 'air showers' in which other particles are created, and some of them reach the ground."

The air showers pose the most serious threat for the health of humans and other biology on the Earth's surface via "ionizing radiation," according to the researcher.

"Ionizing radiation is any radiation that can tear apart an atom or a molecule. It can affect life in many ways, causing skin cancer, birth defects and other things. Normally, about one-sixth of the penetrating radiation we get down near sea level is from secondaries from cosmic rays."

The authors looked carefully at two forms of radiation formed by solar particle events -- muons and neutrons -- finding that muons are the most dangerous to biology at the Earth's surface.

"Muons are a kind of heavy cousin of the electron," Melott said. "They're produced in great abundance by cosmic rays and are responsible for most of the radiation we get on the ground from cosmic rays. Neutrons can do a lot of damage. However, very few of them ever reach the ground. We checked this because some of them do reach the ground. We found that they're likely responsible for a lot less damage than muons, even during a solar particle event."

Of particular interest to the authors was a massive dose of solar radiation around the years 773-776 A.D.

"Carbon-14 evidence was found in tree rings in 2012 that suggests a big radiation dose came down around 775, suggesting a huge solar particle event, at least 10 times larger than any in modern times," Melott said. "Our calculations suggest that even this was mostly harmless, but maybe there is something wrong with our assumptions. We used ordinary understandings of how muons may cause damage, but perhaps there is some new physics here which makes the muons more dangerous."

The researcher said the next step in the investigation should be honing an understanding of how much exposure to muons DNA can withstand.

"In calculating the effect of muons, we used standard assumptions about what the effect of muons should be," Melott said. "Their physics is pretty simple, just that of an electron with a lot of mass. But no one has ever actually done much experimentation to measure the effect of muons on DNA, because under normal conditions they are not a dominant player. They are not important, for example, in nuclear reactor accidents. We would like to put some synthetic DNA in a muon beam and actually measure the effect."

###

The research was funded by the NASA program Astrobiology: Exobiology and Evolutionary Biology.

Media Contact

Brendan M Lynch
brendan@ku.edu
785-864-8855

 @KUNews

http://www.news.ku.edu 

Brendan M Lynch | EurekAlert!

Further reports about: DNA Earth Space birth defects cosmic rays damage defects neutrons radiation dose responsible sea level

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>