Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research investigates whether solar events could trigger birth defects on Earth

21.07.2015

Studies find airplane crews at high altitude are exposed to potentially harmful levels of radiation from cosmic rays.

"Neutrons which don't reach the ground do reach airline altitude," said Adrian Melott, professor of physics and astronomy at the University of Kansas. "Flight crews get a lot more radiation dose from neutrons. In fact, during solar particle events, airplanes are diverted away from the North Pole, where a lot more cosmic rays come down."


This image shows air showers ensuing from very-high-energy cosmic rays which can enter Earth's atmosphere from multiple directions.

Credit: Simon Swordy/NASA

But could these cosmic rays pose hazards even at sea level? In recent years, research has suggested congenital birth defects down on Earth's surface could be caused by these "solar particle events" -- spikes in cosmic rays from the sun that touch off the northern lights and sometimes hamper communications or the electric power grid.

Now, a new NASA-funded investigation has found radiation from solar events is too weak to cause worry at ground level. Results have just been published in the Journal of Geophysical Research and hailed as one of three "Editor's Choice" publications for the first quarter of 2015 by Space Weather.

"We looked at two different studies," said co-author Melott. "Both of them indicated a connection between cosmic rays and the rate of birth defects. One also associated mutations in cells growing in a petri dish with a 1989 solar particle event."

But Melott and colleagues Andrew C. Overholt of MidAmerica Nazarene University and Dimitra Atri of the Blue Marble Space Institute of Science have calculated the dose of radiation from a solar particle event to be less than a visit to the doctor might necessitate.

"We have a contradiction," Melott said. "Our estimates suggest that the radiation on the ground from these solar events is very small. And yet the experimental evidence suggests that something is going on that causes birth defects. We don't understand this, which is good. Something one doesn't understand is a pointer to an interesting scientific problem."

Melott and his co-authors looked at how cosmic rays from the sun create hazardous "secondaries" by reacting with the Earth's atmosphere.

"Cosmic rays are mostly protons," he said. "Basically, they are the nuclei of atoms -- with all the electrons stripped off. Some come from the sun. Others come from all kinds of violent events all over the universe. Most of the ones that hit the Earth's atmosphere don't reach the ground, but they set off 'air showers' in which other particles are created, and some of them reach the ground."

The air showers pose the most serious threat for the health of humans and other biology on the Earth's surface via "ionizing radiation," according to the researcher.

"Ionizing radiation is any radiation that can tear apart an atom or a molecule. It can affect life in many ways, causing skin cancer, birth defects and other things. Normally, about one-sixth of the penetrating radiation we get down near sea level is from secondaries from cosmic rays."

The authors looked carefully at two forms of radiation formed by solar particle events -- muons and neutrons -- finding that muons are the most dangerous to biology at the Earth's surface.

"Muons are a kind of heavy cousin of the electron," Melott said. "They're produced in great abundance by cosmic rays and are responsible for most of the radiation we get on the ground from cosmic rays. Neutrons can do a lot of damage. However, very few of them ever reach the ground. We checked this because some of them do reach the ground. We found that they're likely responsible for a lot less damage than muons, even during a solar particle event."

Of particular interest to the authors was a massive dose of solar radiation around the years 773-776 A.D.

"Carbon-14 evidence was found in tree rings in 2012 that suggests a big radiation dose came down around 775, suggesting a huge solar particle event, at least 10 times larger than any in modern times," Melott said. "Our calculations suggest that even this was mostly harmless, but maybe there is something wrong with our assumptions. We used ordinary understandings of how muons may cause damage, but perhaps there is some new physics here which makes the muons more dangerous."

The researcher said the next step in the investigation should be honing an understanding of how much exposure to muons DNA can withstand.

"In calculating the effect of muons, we used standard assumptions about what the effect of muons should be," Melott said. "Their physics is pretty simple, just that of an electron with a lot of mass. But no one has ever actually done much experimentation to measure the effect of muons on DNA, because under normal conditions they are not a dominant player. They are not important, for example, in nuclear reactor accidents. We would like to put some synthetic DNA in a muon beam and actually measure the effect."

###

The research was funded by the NASA program Astrobiology: Exobiology and Evolutionary Biology.

Media Contact

Brendan M Lynch
brendan@ku.edu
785-864-8855

 @KUNews

http://www.news.ku.edu 

Brendan M Lynch | EurekAlert!

Further reports about: DNA Earth Space birth defects cosmic rays damage defects neutrons radiation dose responsible sea level

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>