Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research investigates whether solar events could trigger birth defects on Earth

21.07.2015

Studies find airplane crews at high altitude are exposed to potentially harmful levels of radiation from cosmic rays.

"Neutrons which don't reach the ground do reach airline altitude," said Adrian Melott, professor of physics and astronomy at the University of Kansas. "Flight crews get a lot more radiation dose from neutrons. In fact, during solar particle events, airplanes are diverted away from the North Pole, where a lot more cosmic rays come down."


This image shows air showers ensuing from very-high-energy cosmic rays which can enter Earth's atmosphere from multiple directions.

Credit: Simon Swordy/NASA

But could these cosmic rays pose hazards even at sea level? In recent years, research has suggested congenital birth defects down on Earth's surface could be caused by these "solar particle events" -- spikes in cosmic rays from the sun that touch off the northern lights and sometimes hamper communications or the electric power grid.

Now, a new NASA-funded investigation has found radiation from solar events is too weak to cause worry at ground level. Results have just been published in the Journal of Geophysical Research and hailed as one of three "Editor's Choice" publications for the first quarter of 2015 by Space Weather.

"We looked at two different studies," said co-author Melott. "Both of them indicated a connection between cosmic rays and the rate of birth defects. One also associated mutations in cells growing in a petri dish with a 1989 solar particle event."

But Melott and colleagues Andrew C. Overholt of MidAmerica Nazarene University and Dimitra Atri of the Blue Marble Space Institute of Science have calculated the dose of radiation from a solar particle event to be less than a visit to the doctor might necessitate.

"We have a contradiction," Melott said. "Our estimates suggest that the radiation on the ground from these solar events is very small. And yet the experimental evidence suggests that something is going on that causes birth defects. We don't understand this, which is good. Something one doesn't understand is a pointer to an interesting scientific problem."

Melott and his co-authors looked at how cosmic rays from the sun create hazardous "secondaries" by reacting with the Earth's atmosphere.

"Cosmic rays are mostly protons," he said. "Basically, they are the nuclei of atoms -- with all the electrons stripped off. Some come from the sun. Others come from all kinds of violent events all over the universe. Most of the ones that hit the Earth's atmosphere don't reach the ground, but they set off 'air showers' in which other particles are created, and some of them reach the ground."

The air showers pose the most serious threat for the health of humans and other biology on the Earth's surface via "ionizing radiation," according to the researcher.

"Ionizing radiation is any radiation that can tear apart an atom or a molecule. It can affect life in many ways, causing skin cancer, birth defects and other things. Normally, about one-sixth of the penetrating radiation we get down near sea level is from secondaries from cosmic rays."

The authors looked carefully at two forms of radiation formed by solar particle events -- muons and neutrons -- finding that muons are the most dangerous to biology at the Earth's surface.

"Muons are a kind of heavy cousin of the electron," Melott said. "They're produced in great abundance by cosmic rays and are responsible for most of the radiation we get on the ground from cosmic rays. Neutrons can do a lot of damage. However, very few of them ever reach the ground. We checked this because some of them do reach the ground. We found that they're likely responsible for a lot less damage than muons, even during a solar particle event."

Of particular interest to the authors was a massive dose of solar radiation around the years 773-776 A.D.

"Carbon-14 evidence was found in tree rings in 2012 that suggests a big radiation dose came down around 775, suggesting a huge solar particle event, at least 10 times larger than any in modern times," Melott said. "Our calculations suggest that even this was mostly harmless, but maybe there is something wrong with our assumptions. We used ordinary understandings of how muons may cause damage, but perhaps there is some new physics here which makes the muons more dangerous."

The researcher said the next step in the investigation should be honing an understanding of how much exposure to muons DNA can withstand.

"In calculating the effect of muons, we used standard assumptions about what the effect of muons should be," Melott said. "Their physics is pretty simple, just that of an electron with a lot of mass. But no one has ever actually done much experimentation to measure the effect of muons on DNA, because under normal conditions they are not a dominant player. They are not important, for example, in nuclear reactor accidents. We would like to put some synthetic DNA in a muon beam and actually measure the effect."

###

The research was funded by the NASA program Astrobiology: Exobiology and Evolutionary Biology.

Media Contact

Brendan M Lynch
brendan@ku.edu
785-864-8855

 @KUNews

http://www.news.ku.edu 

Brendan M Lynch | EurekAlert!

Further reports about: DNA Earth Space birth defects cosmic rays damage defects neutrons radiation dose responsible sea level

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>