Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research investigates whether solar events could trigger birth defects on Earth

21.07.2015

Studies find airplane crews at high altitude are exposed to potentially harmful levels of radiation from cosmic rays.

"Neutrons which don't reach the ground do reach airline altitude," said Adrian Melott, professor of physics and astronomy at the University of Kansas. "Flight crews get a lot more radiation dose from neutrons. In fact, during solar particle events, airplanes are diverted away from the North Pole, where a lot more cosmic rays come down."


This image shows air showers ensuing from very-high-energy cosmic rays which can enter Earth's atmosphere from multiple directions.

Credit: Simon Swordy/NASA

But could these cosmic rays pose hazards even at sea level? In recent years, research has suggested congenital birth defects down on Earth's surface could be caused by these "solar particle events" -- spikes in cosmic rays from the sun that touch off the northern lights and sometimes hamper communications or the electric power grid.

Now, a new NASA-funded investigation has found radiation from solar events is too weak to cause worry at ground level. Results have just been published in the Journal of Geophysical Research and hailed as one of three "Editor's Choice" publications for the first quarter of 2015 by Space Weather.

"We looked at two different studies," said co-author Melott. "Both of them indicated a connection between cosmic rays and the rate of birth defects. One also associated mutations in cells growing in a petri dish with a 1989 solar particle event."

But Melott and colleagues Andrew C. Overholt of MidAmerica Nazarene University and Dimitra Atri of the Blue Marble Space Institute of Science have calculated the dose of radiation from a solar particle event to be less than a visit to the doctor might necessitate.

"We have a contradiction," Melott said. "Our estimates suggest that the radiation on the ground from these solar events is very small. And yet the experimental evidence suggests that something is going on that causes birth defects. We don't understand this, which is good. Something one doesn't understand is a pointer to an interesting scientific problem."

Melott and his co-authors looked at how cosmic rays from the sun create hazardous "secondaries" by reacting with the Earth's atmosphere.

"Cosmic rays are mostly protons," he said. "Basically, they are the nuclei of atoms -- with all the electrons stripped off. Some come from the sun. Others come from all kinds of violent events all over the universe. Most of the ones that hit the Earth's atmosphere don't reach the ground, but they set off 'air showers' in which other particles are created, and some of them reach the ground."

The air showers pose the most serious threat for the health of humans and other biology on the Earth's surface via "ionizing radiation," according to the researcher.

"Ionizing radiation is any radiation that can tear apart an atom or a molecule. It can affect life in many ways, causing skin cancer, birth defects and other things. Normally, about one-sixth of the penetrating radiation we get down near sea level is from secondaries from cosmic rays."

The authors looked carefully at two forms of radiation formed by solar particle events -- muons and neutrons -- finding that muons are the most dangerous to biology at the Earth's surface.

"Muons are a kind of heavy cousin of the electron," Melott said. "They're produced in great abundance by cosmic rays and are responsible for most of the radiation we get on the ground from cosmic rays. Neutrons can do a lot of damage. However, very few of them ever reach the ground. We checked this because some of them do reach the ground. We found that they're likely responsible for a lot less damage than muons, even during a solar particle event."

Of particular interest to the authors was a massive dose of solar radiation around the years 773-776 A.D.

"Carbon-14 evidence was found in tree rings in 2012 that suggests a big radiation dose came down around 775, suggesting a huge solar particle event, at least 10 times larger than any in modern times," Melott said. "Our calculations suggest that even this was mostly harmless, but maybe there is something wrong with our assumptions. We used ordinary understandings of how muons may cause damage, but perhaps there is some new physics here which makes the muons more dangerous."

The researcher said the next step in the investigation should be honing an understanding of how much exposure to muons DNA can withstand.

"In calculating the effect of muons, we used standard assumptions about what the effect of muons should be," Melott said. "Their physics is pretty simple, just that of an electron with a lot of mass. But no one has ever actually done much experimentation to measure the effect of muons on DNA, because under normal conditions they are not a dominant player. They are not important, for example, in nuclear reactor accidents. We would like to put some synthetic DNA in a muon beam and actually measure the effect."

###

The research was funded by the NASA program Astrobiology: Exobiology and Evolutionary Biology.

Media Contact

Brendan M Lynch
brendan@ku.edu
785-864-8855

 @KUNews

http://www.news.ku.edu 

Brendan M Lynch | EurekAlert!

Further reports about: DNA Earth Space birth defects cosmic rays damage defects neutrons radiation dose responsible sea level

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>