Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research finds slower growth of preterm infants linked to altered brain development

17.01.2013
Preterm infants who grow more slowly as they approached what would have been their due dates also have slower development in an area of the brain called the cerebral cortex, report Canadian researchers in a new study published today in Science Translational Medicine.

The cerebral cortex is a two to four millimetre layer of cells that envelopes the top part of the brain and is involved in cognitive, behavioural, and motor processes.

Researchers analyzed MRI brain scans of 95 preterm infants born eight to 16 weeks too early at BC Women’s Hospital & Health Centre between 2006 and 2009. Infants were scanned soon after birth and a second time close to what would have been their due date, the ninth month of pregnancy. These MRI scans allowed researchers to measure the pattern of water movement inside the brain, which normally changes between scans as the brain matures. The researchers also assessed the babies’ weight, length, and head size. They found that preterm infants with slower growth had delayed development in the cerebral cortex compared to those infants who grew more quickly between scans.

“These results are an exciting first step because understanding the importance of growth in relation to the brain in these small babies may eventually lead to new discoveries that will help us optimize their brain development,” says Dr. Steven Miller, the study’s co‐lead. Dr. Miller is head of neurology at The Hospital for Sick Children (SickKids), the Bloorview Children’s Hospital Chair in Paediatric Neuroscience, professor in the department of Paediatrics at the University of Toronto, affiliate professor in the department of Pediatrics at the University of British Columbia (UBC), and affiliate investigator at the Child & Family Research Institute (CFRI) at BC Children’s Hospital. He led the study with Dr. Ruth Grunau, a professor in the UBC Department of Pediatrics and CFRI senior scientist.

“More research needs to be done to understand what is the optimal growth rate for the brain development of these babies,” says Jillian Vinall, the study’s first author and a UBC PhD student cosupervised

by Dr. Grunau and Dr. Miller.

“We’re especially grateful to the families for their generous and ongoing participation in this study,” says Dr. Miller. The researchers are following the babies through childhood to understand how preterm brain development is associated with their neurodevelopment outcomes.

This work is supported by the Canadian Institutes of Health Research. Dr. Miller was supported by a Tier 2 Canada Research Chair in Neonatal Neuroscience and a Michael Smith Foundation for Health Research 2 Scholar Award. Dr. Grunau is supported by a Senior Scientist Award from the Child & Family Research Institute. Jillian Vinall holds a CIHR Frederick Banting and Charles Best Canada Scholarship Masters & Doctoral Award, Pain in Child Health (CIHR Strategic Training Initiative in Health Research) trainee

support and CFRI Graduate Studentship.

The Child & Family Research Institute conducts discovery, translational and clinical research to benefit the health of children and their families. CFRI is supported by BC Children's Hospital Foundation and works in close partnership with the University of British Columbia, BC Children’s Hospital, and BC Women’s Hospital & Health Centre (agencies of the Provincial Health Services Authority). For more information, visit www.cfri.ca.

BC Children’s Hospital, an agency of the Provincial Health Services Authority, is British Columbia’s (B.C.’s) only pediatric hospital and home to many specialized pediatric services available nowhere else in the province, including B.C.’s trauma centre for children, pediatric intensive care, kidney and bone marrow transplants, open heart surgery, neurosurgery and cancer treatment. Sunny Hill Health Centre for Children is the provincial facility that offers specialized child development and rehabilitation services to children and youth. For more information, please visit www.bcchildrens.ca.

The University of British Columbia (UBC) is one of North America’s largest public research and teaching institutions, and one of only two Canadian institutions consistently ranked among the world’s 22 best universities. Surrounded by the beauty of the Canadian West, it is a place that inspires bold, new ways of thinking that have helped make it a national leader in areas as diverse as community service learning, sustainability and research commercialization. UBC offers more than 56,000 students a range of innovative programs and attracts $550 million per year in research funding from government, non‐profit organizations and industry through over 8,000 projects and grants. For more information, please visit www.ubc.ca.

The Hospital for Sick Children (SickKids) is recognized as one of the world’s foremost pediatric health‐care institutions and is Canada’s leading centre dedicated to advancing children’s health through the integration of patient care, research and education. Founded in 1875 and affiliated with the University of Toronto, SickKids is one of Canada’s most research-intensive hospitals and has generated discoveries that have helped children globally. Its mission is to provide the best in complex and specialized family-centred care; pioneer scientific and clinical advancements; share expertise; foster an academic environment that nurtures health‐care professionals; and champion an accessible, comprehensive and sustainable child health system. SickKids is proud of its vision of Healthier Children. A Better World.™ For more information, visit www.sickkids.ca.

Jennifer Kohm | EurekAlert!
Further information:
http://www.sickkids.ca
http://www.ubc.ca

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>