Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Research Provides Clues on Why Hair Turns Gray

15.06.2011
Communication Between Hair Follicles and Melanocyte Stem Cells Key to Mystery

Findings Also Offer Insight into Human Tissue Regeneration

A new study by researchers at NYU Langone Medical Center has shown that, for the first time, Wnt signaling, already known to control many biological processes, between hair follicles and melanocyte stem cells can dictate hair pigmentation. The study was published in the June 11, 2011 issue of the journal Cell.

The research was led by Mayumi Ito, PhD, assistant professor in the Ronald O. Pereleman Department of Dermatology at NYU Langone. “We have known for decades that hair follicle stem cells and pigment-producing melanocycte cells collaborate to produce colored hair, but the underlying reasons were unknown,” said Dr. Ito. “We discovered Wnt signaling is essential for coordinated actions of these two stem cell lineages and critical for hair pigmentation.” The study suggests the manipulation of Wnt signaling may be a novel strategy for targeting pigmentation such as graying hair. The research study also illustrates a model for tissue regeneration.

“The human body has many types of stem cells that have the potential to regenerate other organs,” said Dr. Ito. “The methods behind communication between stem cells of hair and color during hair replacement may give us important clues to regenerate complex organs containing many different types of cells.”

Using genetic mouse models, researchers were able to examine how Wnt signaling pathways enabled both hair follicle stem cells and melanocyte stem cells to work together to generate hair growth and produce hair color. Research also showed the depletion (or inhibition or abnormal) Wnt signaling in hair follicle stem cells not only inhibits hair re-growth but also prevents melanocytes stem cell activation required for producing hair color. The lack of Wnt activation in melanocyte stem cells leads to depigmented or gray hair.

The study raises the possibility that Wnt signaling is a key pathway for the regulation of melanocyte stem cells and shows how melanocyte behavior is associated with hair regeneration. This insight provides further understanding of diseases in which melanocytes are either appropriately lost such as hair graying or undergo uncontrolled cell growth as in melanoma.

Media Inquiries:
Christopher Rucas
212-404-3525 | Christopher.Rucas@nyumc.org

Christopher Rucas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

World first for reading digitally encoded synthetic molecules

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>