Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New report puts real numbers behind history of oyster reefs

13.06.2012
First-ever quantitative assessment is a breakthrough for coastal restoration efforts

In an effort to advance the field of coastal restoration, The Nature Conservancy and a team of scientists from more than a dozen management agencies and research institutions led by the University of Cambridge conducted an in-depth study of oyster reef area and, for the first time, the actual biomass (the "living weight") of oyster reefs in dozens of estuaries throughout the United States.

'Historical ecology with real numbers', published today in Proceedings of the Royal Society B, presents the first truly quantitative estimates of decline in oyster habitat over such a large spatial and temporal scale.

The findings show that while that oyster reef area declined by 64% over the last century, the total biomass, or living weight of oysters on reefs, had dropped by 88% during this period, revealing that simple physical area is an unreliable indicator of habitat status.

The good news, according to lead author Dr. Philine zu Ermgassen of University of Cambridge, is that the study gives a much-needed historical picture of conditions in specific bays and estuaries, something that will aid in future restoration efforts.

"Oysters were a valuable resource, even a century ago, so government surveyors mapped vast acreages and built up a story of a critically important habitat in wonderful detail," said Dr. zu Ermgassen. "Although somewhat unfamiliar to us here in Europe the humble oyster was once so numerous, both here and in the United States, that it formed large physical structures – oyster reefs – that rose up in banks off the sea bed.
"Using meticulous records compiled 100 years ago, we have been able to accurately quantify the changes in oyster reefs over time. Anecdotes have been converted to hard facts. Of course there have been huge losses in area, but that is only part of the story. We've also noted changes in density and structure of the remaining oysters, such that what is left is a much depleted habitat. Managers and scientists need to pay closer attention to density when setting restoration or conservation objectives."

"In addition to aiding restoration, the study will inspire it," says co-author Dr. Mark Spalding, a lead scientist with The Nature Conservancy's Global Marine Program, and also based at Cambridge. Indeed, the authors are keen to point out that the US is leading the world in turning things around for these habitats, with restoration work underway in numerous estuaries to restore oyster habitat.
"This is a call to action, and these findings will provide funders and managers with a powerful baseline – a clear vision of how things were – and an opportunity to establish meaningful goals and targets. The findings have implications beyond oyster reefs, however. Almost all of our concerns about the loss of natural areas – from forests and wetlands to seagrass meadows and kelp beds – are based on an estimation of change in area," said Dr. Spalding. "This study shows that the losses may be even worse than we thought, because the quality of the remaining patches of habitat may be so diminished that it is not providing the function we expect from any given area."

Funding support for this study was provided by the National Fish and Wildlife Foundation (NFWF), the National Partnership between TNC and NOAA Restoration Center, The Turner Foundation and the TNC-Shell Partnership.
For additional information, please contact:

Lead author: Dr. Philine zu Ermgassen, Department of Zoology, University of Cambridge. philine.zuermgassen@cantab.net

The Nature Conservancy contacts: Dr. Rob Brumbaugh (rbrumbaugh@tnc.org) and Dr. Mark Spalding (mspalding@tnc.org), Global Marine Team, The Nature Conservancy.

Notes to Editors:

1. Citation: Zu Ermgassen, P. S. E., Spalding, M. D., Blake, B., Coen, L. D., Dumbauld, B., Geiger, S., Grabowski, J. H., Grizzle, R., Luckenbach, M., McGraw, K., Rodney, B., Ruesink, J. L., Powers, S. P., and Brumbaugh, R., 2012, Historical ecology with real numbers: Past and present extent and biomass of an imperilled estuarine habitat: Proceedings of the Royal Society B: Biological Sciences. The paper was published on Wednesday 13 June.

2. Co-authors and Institutional Affiliations:
Brady Blake, Washington State Department of Fish and Wildlife, Point Whitney Shellfish Laboratory
Dr. Loren D. Coen, Department of Biological Sciences, Florida Atlantic University
Dr. Brett Dumbauld, USDA Agricultural Research Service, Hatfield Marine Science Center
Dr. Steve Geiger, Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission
Dr. Jonathan H. Grabowski, Northeastern University
Dr. Raymond Grizzle, Dept. of Biological Sciences, University of New Hampshire
Dr. Mark Luckenbach, Virginia Institute of Marine Sciences, College of William and Mary
Dr. Kay McGraw, National Oceanic and Atmospheric Administration Restoration Center
William Rodney, Texas Parks and Wildlife Department, Dickinson Marine Laboratory
Dr. Jennifer Ruesink, Department of Biology, University of Washington
Dr. Sean P. Powers, Department of Marine Sciences, University of South Alabama

Philine zu Ermgassen | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Studies and Analyses:

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>