Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New report puts real numbers behind history of oyster reefs

13.06.2012
First-ever quantitative assessment is a breakthrough for coastal restoration efforts

In an effort to advance the field of coastal restoration, The Nature Conservancy and a team of scientists from more than a dozen management agencies and research institutions led by the University of Cambridge conducted an in-depth study of oyster reef area and, for the first time, the actual biomass (the "living weight") of oyster reefs in dozens of estuaries throughout the United States.

'Historical ecology with real numbers', published today in Proceedings of the Royal Society B, presents the first truly quantitative estimates of decline in oyster habitat over such a large spatial and temporal scale.

The findings show that while that oyster reef area declined by 64% over the last century, the total biomass, or living weight of oysters on reefs, had dropped by 88% during this period, revealing that simple physical area is an unreliable indicator of habitat status.

The good news, according to lead author Dr. Philine zu Ermgassen of University of Cambridge, is that the study gives a much-needed historical picture of conditions in specific bays and estuaries, something that will aid in future restoration efforts.

"Oysters were a valuable resource, even a century ago, so government surveyors mapped vast acreages and built up a story of a critically important habitat in wonderful detail," said Dr. zu Ermgassen. "Although somewhat unfamiliar to us here in Europe the humble oyster was once so numerous, both here and in the United States, that it formed large physical structures – oyster reefs – that rose up in banks off the sea bed.
"Using meticulous records compiled 100 years ago, we have been able to accurately quantify the changes in oyster reefs over time. Anecdotes have been converted to hard facts. Of course there have been huge losses in area, but that is only part of the story. We've also noted changes in density and structure of the remaining oysters, such that what is left is a much depleted habitat. Managers and scientists need to pay closer attention to density when setting restoration or conservation objectives."

"In addition to aiding restoration, the study will inspire it," says co-author Dr. Mark Spalding, a lead scientist with The Nature Conservancy's Global Marine Program, and also based at Cambridge. Indeed, the authors are keen to point out that the US is leading the world in turning things around for these habitats, with restoration work underway in numerous estuaries to restore oyster habitat.
"This is a call to action, and these findings will provide funders and managers with a powerful baseline – a clear vision of how things were – and an opportunity to establish meaningful goals and targets. The findings have implications beyond oyster reefs, however. Almost all of our concerns about the loss of natural areas – from forests and wetlands to seagrass meadows and kelp beds – are based on an estimation of change in area," said Dr. Spalding. "This study shows that the losses may be even worse than we thought, because the quality of the remaining patches of habitat may be so diminished that it is not providing the function we expect from any given area."

Funding support for this study was provided by the National Fish and Wildlife Foundation (NFWF), the National Partnership between TNC and NOAA Restoration Center, The Turner Foundation and the TNC-Shell Partnership.
For additional information, please contact:

Lead author: Dr. Philine zu Ermgassen, Department of Zoology, University of Cambridge. philine.zuermgassen@cantab.net

The Nature Conservancy contacts: Dr. Rob Brumbaugh (rbrumbaugh@tnc.org) and Dr. Mark Spalding (mspalding@tnc.org), Global Marine Team, The Nature Conservancy.

Notes to Editors:

1. Citation: Zu Ermgassen, P. S. E., Spalding, M. D., Blake, B., Coen, L. D., Dumbauld, B., Geiger, S., Grabowski, J. H., Grizzle, R., Luckenbach, M., McGraw, K., Rodney, B., Ruesink, J. L., Powers, S. P., and Brumbaugh, R., 2012, Historical ecology with real numbers: Past and present extent and biomass of an imperilled estuarine habitat: Proceedings of the Royal Society B: Biological Sciences. The paper was published on Wednesday 13 June.

2. Co-authors and Institutional Affiliations:
Brady Blake, Washington State Department of Fish and Wildlife, Point Whitney Shellfish Laboratory
Dr. Loren D. Coen, Department of Biological Sciences, Florida Atlantic University
Dr. Brett Dumbauld, USDA Agricultural Research Service, Hatfield Marine Science Center
Dr. Steve Geiger, Florida Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission
Dr. Jonathan H. Grabowski, Northeastern University
Dr. Raymond Grizzle, Dept. of Biological Sciences, University of New Hampshire
Dr. Mark Luckenbach, Virginia Institute of Marine Sciences, College of William and Mary
Dr. Kay McGraw, National Oceanic and Atmospheric Administration Restoration Center
William Rodney, Texas Parks and Wildlife Department, Dickinson Marine Laboratory
Dr. Jennifer Ruesink, Department of Biology, University of Washington
Dr. Sean P. Powers, Department of Marine Sciences, University of South Alabama

Philine zu Ermgassen | EurekAlert!
Further information:
http://www.cam.ac.uk

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>