Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds first-ever genetic animal model of autism

10.12.2007
Research may further understanding of autism in humans

By introducing a gene mutation in mice, investigators have created what they believe to be the first accurate model of autism not associated with a broader neuropsychiatric syndrome, according to research presented at the American College of Neuropsychopharmacology annual meeting.

This animal model could help researchers better understand abnormal brain function in autistic humans, which could help them identify and improve treatment strategies. Broader neuropsychiatric conditions include Fragile X, the most common cause of inherited mental impairment, and Rett Syndrome, a childhood neurodevelopmental disorder characterized by normal early development followed by slowed brain and head growth, seizures, and mental retardation.

Autism is a neuropsychiatric disorder characterized by repetitive behaviors and by impairment in social interactions and communication skills. These symptoms can coexist with either enhanced or decreased cognitive abilities and skills.

“Prior to this study we knew next to nothing about the mechanisms of autism in the brain,” says study researcher Craig M. Powell, M.D., Ph.D., assistant professor of neurology and psychiatry at the University of Texas Southwestern Medical Center at Dallas. “With this research, we can study changes in the brain that lead to autistic behaviors and symptoms, which may help us understand more about progression and treatment of the disorder.”

The research team, led by Thomas Südhof, M.D., professor and chairman of neuroscience at UT Southwestern, replaced the normal mouse neurologin-3 gene with a mutated neuroligin-3 gene associated with autism in humans. By doing so, the team was able to create a gene in the mice that is similar to the human autism disease gene. While the result amounted to a very small change in their genetic makeup, it perfectly mimicked the same small change occurring in some patients with human autism.

Dr. Powell studied the genetically altered mice and found that, when examined in behavioral tests that may reflect key signs of autism, they showed decreased social interaction with other mice; other traits, such as anxiety, coordination and pain sensitivity, were unaffected. These social interaction deficits, Dr. Powell says, are hallmark features of human autism. In addition, the mice showed enhanced spatial learning abilities, which may resemble the enhanced cognitive abilities in autistic savants (people who have a severe developmental or mental handicap as well as extraordinary mental abilities).

“These findings could be especially helpful in identifying novel treatment approaches. We already know that inhibitory chemical synaptic transmission from one neuron to the next is increased in this mouse model. Now we can test drugs that decrease this effect directly in the mice and ask whether this reverses their social interaction deficits,” Dr. Powell says. “For now, the mainstay of autism treatment is still behavioral therapy. The earlier we can get patients involved with behavioral interventions, the better off people with autism will be.” Dr. Powell adds that the model gives researchers insight into mouse brains which share important parallels with brains of living humans, which can only be studied in limited ways with the use of new brain imaging tools.

Sharon Reis | EurekAlert!
Further information:
http://www.acnp.org/

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>