Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nature Study: Is modern Arctic Ocean Circulation exceptional?

03.12.2007
The Arctic Ocean only has a limited exchange with the global ocean, whereby the Fram Strait between Greenland and Svalbard is the only deep water connection to the Atlantic Ocean. It is this connection that supplies oxygen to the deep Arctic Ocean.

Today a pronounced and stable freshwater layer at the surface originating from inputs of the large Russian rivers almost completely prevents any significant deep water formation in the Arctic Ocean itself. The results of Brian Haley and colleagues from the IFM-GEOMAR now show that this was an exception rather than the rule for most of the past 15 million years.

The Kiel team made their discovery when they carried out geochemical analyses on sediments of the Arctic Coring Expedition (ACEX, Leg 302 of the Integrated Ocean Drilling Program (IODP)) and of a RV Polarstern expedition, which had been recovered near the North Pole on the Lomonosov Ridge between 1.000 und 1.200 m water depth. They reconstructed the seawater isotope ratio of the element neodymium (143Nd/144Nd) from the sediments. The Nd, which has characteristic isotope ratios in rocks as a function of their type and age, is transported to the ocean through weathering, where it provides information on the sources of water masses. To their surprise, the geochemists found that the isotope signature of the seawater was strongly different from the present day values, with the exception of the warm periods of the past 400.000 years. “It is even more surprising that this isotope signature indicated a pronounced influence of the weathering of basaltic rocks”, says Brian Haley. On the Circum-arctic landmasses such rocks, however, only exist in the form of the Siberian “Putorana flood basalts”.

From this geologically unique setting and taking into account the evolution of the continental ice sheets of the past 140.000 years, it was then possible to reconstruct the circulation history of the deep Arctic Ocean. The signature of the basalts can only have arrived at 1.000 m water depth in the central Arctic Ocean if vast amounts of new sea ice formed near the basalt areas in the Kara Sea area. How did the signature arrive at the seafloor? “During sea ice formation the salt of the sea water freezes out and is rejected, thereby forming highly saline brines, which were denser than the surrounding sea water. These brines sank and transported the dissolved Nd isotope signature of the basalts to the sea floor where the sediment cores were recovered”, explains Martin Frank, co-author of the study. Further, the obtained Nd isotope variations imply that the inflow of Atlantic waters was significantly reduced during most of the past 15 million years and during the glacial periods of the past 400.000 years. This also suggests that during these periods of time the main area of Atlantic deep water formation was not located in the Norwegian-Greenland Sea, similar to today, but further south.

The arctic IODP ACEX drilling project was coordinated by the European consortium ECORD (European Consortium for Ocean Research Drilling). This organization consists of partners from 17 European nations participating in the „International Ocean Drilling Programme“. ECORD is also responsible for the planning and coordination of special operations, for which normal drilling vessels cannot be used, as was the case for the ACEX project. For such purposes special platforms are used to achieve the scientific goals.

Andreas Villwock | alfa
Further information:
http://www.ifm-geomar.de/index.php?id=3887&L=1

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>