Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research shows climate change triggers wars and population decline

23.11.2007
Reduced agricultural productivity seems to initiate conflict

Climate change may be one of the most significant threats facing humankind. A new study shows that long-term climate change may ultimately lead to wars and population decline.

The study, published November 19 in the early edition of the journal Proceedings of the National Academy of Sciences (PNAS), revealed that as temperatures decreased centuries ago during a period called the Little Ice Age, the number of wars increased, famine occurred and the population declined.

Data on past climates may help accurately predict and design strategies for future large and persistent climate changes, but acknowledging the historic social impact of these severe events is an important step toward that goal, according to the study’s authors.

“Even though temperatures are increasing now, the same resulting conflicts may occur since we still greatly depend on the land as our food source,” said Peter Brecke, associate professor in the Georgia Institute of Technology’s Sam Nunn School of International Affairs and co-author of the study.

This new study expands previous work by David Zhang of the University of Hong Kong and lead author of the study.

“My previous research just focused on Eastern China. This current study covers a much larger spatial area and the conclusions from the current research could be considered general principles,” said Zhang.

Brecke, Zhang and colleagues in Hong Kong, China and the United Kingdom perceived a possible connection between temperature change and wars because changes in climate affect water supplies, growing seasons and land fertility, prompting food shortages. These shortages could lead to conflict – local uprisings, government destabilization and invasions from neighboring regions – and population decline due to bloodshed during the wars and starvation.

To study whether changes in temperature affected the number of wars, the researchers examined the time period between 1400 and 1900. This period recorded the lowest average global temperatures around 1450, 1650 and 1820, each separated by slight warming intervals.

The researchers collected war data from multiple sources, including a database of 4,500 wars worldwide that Brecke began developing in 1995 with funding from the U.S. Institute of Peace. They also used climate change records that paleoclimatologists reconstructed by consulting historical documents and examining indicators of temperature change like tree rings, as well as oxygen isotopes in ice cores and coral skeletons.

Results showed a cyclic pattern of turbulent periods when temperatures were low followed by tranquil ones when temperatures were higher. The number of wars per year worldwide during cold centuries was almost twice that of the mild 18th century.

The study also showed population declines following each high war peak, according to population data Brecke assembled. The population growth rate of the Northern Hemisphere was elevated from 1400-1600, despite a short cooling period beginning in the middle of the 15th century. However, during the colder 17th century, Europe and Asia experienced more wars of great magnitude and population declines.

In China, the population plummeted 43 percent between 1620 and 1650. Then, a dramatic increase in population occurred from 1650 until a cooling period beginning in 1800 caused a worldwide demographic shock.

The researchers examined whether these average temperature differences of less than one degree Celsius were enough to cause food shortages. By assuming that agricultural production decreases triggered price increases, they showed that when grain prices reached a certain level, wars erupted. The ecological stress on agricultural production triggered by climate change did in fact induce population shrinkages, according to Brecke.

Global temperatures are expected to rise in the future and the world’s growing population may be unable to adequately adapt to the ecological changes, according to Brecke.

“The warmer temperatures are probably good for a while, but beyond some level plants will be stressed,” explained Brecke. “With more droughts and a rapidly growing population, it is going to get harder and harder to provide food for everyone and thus we should not be surprised to see more instances of starvation and probably more cases of hungry people clashing over scarce food and water.”

Abby Vogel | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>