Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes to be replaced by MoSIx nanowires in high-tech devices

23.11.2007
Structural and physical properties of Mo6SxI9-x molecular nanowires

Carbon nanotubes have long been touted as the wonder material of the future. Applications cited for carbon nanotubes range from super fast computers and ultra small electronics through to materials that are lightweight yet super strong and tougher than diamond.

Several techniques have been devised for producing carbon nanotubes but, getting these materials and devices from the laboratory to the marketplace is obstructed by one inherent problem. Scaling up laboratory production techniques to produce commercial quantities of high quality, high purity carbon nanotubes is a difficult process. But this is set to change with another type of recently discovered nanotube currently under investigation.

This promising new material is molybdenum-sulfur-iodine nanowires. Researchers from Jožef Stefan Institute have investigated the atomic and electronic structure of molybdenum-sulfur-iodine molecular nanowires as well as their basic transport, optical and mechanical properties. The research has now been published in a special edition of the open access journal, AZoJono and can be accessed in its entirety at http://www.azonano.com/Details.asp?ArticleID=2039.

This special edition of AZoJono* features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and applications of nanotubes, nanowires and nanotube arrays for industrial technology.

The research team of D. Dvorsek, D. Vengust, V. Nicolosi, W.J. Blau, J.C. Coleman and D. Mihailovic found that the material also known as MoSIx nanowires was relatively easy to synthesise and disperse making it highly suited to commercialisation. The properties of the nanowires point to them being suited for use in applications such as battery electrodes, tribology and field emission displays. Ongoing research will look at growth mechanisms, stoichiometry control, magnetoelasticity and electrostrictive properties.

Ian Birkby | EurekAlert!
Further information:
http://www.azonano.com/Details.asp?ArticleID=2039

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>