Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers observe acidic Milky Way galaxies

21.11.2007
SRON astronomer Floris van der Tak is the first to have observed acidic particulate clouds outside of our own Milky Way galaxy. He did this by focusing the James Clerk Maxwell Telescope, located on Hawaii, on two nearby Milky Way galaxies.

Astronomers think that acidification inhibits the formation of stars and planets in the dust clouds. Now it is a case of waiting for precise measurements from the SRON-built HIFI space instrument that will be launched on the Herschel space telescope next year. Van der Tak: ‘I have already submitted my observation proposal’.

The formation of stars and planets in the universe is a delicate process. Clouds of gas and matter rotate and draw together under the influence of gravity. Pressure and temperature then rise, which eventually leads to the kindling of a new star with planets potentially orbiting it. Yet why does this happen at some locations in the universe and not at others? What are the conditions for star and planet formation? How does this process start and when does it stop? Astronomers are fumbling in the dark.

‘The quantity of charged molecules in the dust cloud appears to have an inhibitory effect’, says Floris van der Tak. ‘These ensure that the magnetic fields can exert a greater influence on the cloud, as a result of which the entire cloud becomes agitated and the star-forming process is disrupted’. Observing these charged molecules directly is difficult. The ratio of acidic water molecules to ordinary water molecules is a measure of the quantity of charged molecules.

However, it is difficult to observe water molecules from under an atmosphere that is itself predominantly made up of water molecules. ‘It is like looking for stars in the daylight.’ On Earth it can only be done from a high mountain where the air is rarefied. Such a spot is the 4092 metre-high top of the Hawaiian volcano Mauna Kea, where the James Clerk Maxwell Telescope is located. Van der Tak focused this telescope on the Milky Way galaxies M82 en Arp 220, where he discovered areas rich in acidic water molecules.

‘Amazingly, what causes these acid water molecules to be present in both Milky Way galaxies is completely different’, says Van der Tak. ‘In Arp 220 they develop under the influence of X-rays in the vicinity of the central supermassive black hole. In M82, the cause is the ultraviolet radiation emitted by hot young stars in the star-forming area. Therefore, in these particular galaxies the process of star formation inhibits itself, due to more and more charged molecules being created.’

The astronomer will be able to deploy even heavier equipment for his research in the not too distant future. Next year, the European Space Agency (ESA) is launching the Herschel space telescope with the SRON-constructed Heterodyne Instrument for the Far Infrared (HIFI) attached to it. And in the 5000 metre-high and completely arid Atacama Desert in Chile, a start has been made on the construction of ALMA, 66 smart telescopes that can together produce detailed maps of the Milky Way galaxies. SRON is one of the partners involved in developing the detectors for these telescopes.

The results of the research of Floris van der Tak and his collegues Susanne Aalto of the Chamlers University of Technology, Onsala Sweden and Rowen Meijerink of the University of California are published this week in the scientific journal Astronomy & Astrophysics.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>