Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers observe acidic Milky Way galaxies

21.11.2007
SRON astronomer Floris van der Tak is the first to have observed acidic particulate clouds outside of our own Milky Way galaxy. He did this by focusing the James Clerk Maxwell Telescope, located on Hawaii, on two nearby Milky Way galaxies.

Astronomers think that acidification inhibits the formation of stars and planets in the dust clouds. Now it is a case of waiting for precise measurements from the SRON-built HIFI space instrument that will be launched on the Herschel space telescope next year. Van der Tak: ‘I have already submitted my observation proposal’.

The formation of stars and planets in the universe is a delicate process. Clouds of gas and matter rotate and draw together under the influence of gravity. Pressure and temperature then rise, which eventually leads to the kindling of a new star with planets potentially orbiting it. Yet why does this happen at some locations in the universe and not at others? What are the conditions for star and planet formation? How does this process start and when does it stop? Astronomers are fumbling in the dark.

‘The quantity of charged molecules in the dust cloud appears to have an inhibitory effect’, says Floris van der Tak. ‘These ensure that the magnetic fields can exert a greater influence on the cloud, as a result of which the entire cloud becomes agitated and the star-forming process is disrupted’. Observing these charged molecules directly is difficult. The ratio of acidic water molecules to ordinary water molecules is a measure of the quantity of charged molecules.

However, it is difficult to observe water molecules from under an atmosphere that is itself predominantly made up of water molecules. ‘It is like looking for stars in the daylight.’ On Earth it can only be done from a high mountain where the air is rarefied. Such a spot is the 4092 metre-high top of the Hawaiian volcano Mauna Kea, where the James Clerk Maxwell Telescope is located. Van der Tak focused this telescope on the Milky Way galaxies M82 en Arp 220, where he discovered areas rich in acidic water molecules.

‘Amazingly, what causes these acid water molecules to be present in both Milky Way galaxies is completely different’, says Van der Tak. ‘In Arp 220 they develop under the influence of X-rays in the vicinity of the central supermassive black hole. In M82, the cause is the ultraviolet radiation emitted by hot young stars in the star-forming area. Therefore, in these particular galaxies the process of star formation inhibits itself, due to more and more charged molecules being created.’

The astronomer will be able to deploy even heavier equipment for his research in the not too distant future. Next year, the European Space Agency (ESA) is launching the Herschel space telescope with the SRON-constructed Heterodyne Instrument for the Far Infrared (HIFI) attached to it. And in the 5000 metre-high and completely arid Atacama Desert in Chile, a start has been made on the construction of ALMA, 66 smart telescopes that can together produce detailed maps of the Milky Way galaxies. SRON is one of the partners involved in developing the detectors for these telescopes.

The results of the research of Floris van der Tak and his collegues Susanne Aalto of the Chamlers University of Technology, Onsala Sweden and Rowen Meijerink of the University of California are published this week in the scientific journal Astronomy & Astrophysics.

Jasper Wamsteker | alfa
Further information:
http://www.sron.nl/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>