Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Proteins pack tighter in crowded native state

Rice, University of Houston study offers surprising results

The syrupy soup of proteins, ribosomes and membranes inside a living cell is so tightly packed it may increase the structural content of proteins by as much as 25 percent, according to new research from Rice University and the University of Houston (UH). The study is one of the first aimed at determining how the crowded environment inside a living cell affects protein structure.

"Based on accepted theories, we expected crowding to affect proteins in the unfolded state," said Rice biochemist Pernilla Wittung-Stafshede, one of the study's co-authors. "We were surprised when both experimental evidence and computer simulations showed that crowding also acts directly upon proteins in the folded state."

Living cells are crowded places. They're filled with a chemical soup of 100-300 mg per mL of large molecules, such as DNA, proteins and ribosomes. This corresponds to about 40 percent of volume occupancy.

"The consistency is very viscous," said Wittung-Stafshede. "It's something like Jell-O or the freeway at rush hour."

The study, which was co-authored by UH physicist Margaret Cheung, is available online and slated to appear in the Nov. 27 issue of the Proceedings of the National Academies of Science.

"Our simulations pinpointed specific places in the protein's structure where compaction was occurring and secondary structures improved," Cheung said. "This offers the first observed evidence -- both in silico and in vitro -- for structural effects on proteins in the native state."

To find out how crowded environments affect the stability, structure and folding of proteins, Wittung-Stafshede and Rice graduate student Loren Stagg set up a series of biophysical experiments involving the protein apoflavodoxin. This is an excellent model system because it is well-characterized in dilute conditions and can be made in the lab.

Using sucrose-based polymers (inert synthetic mimics of real macromolecules), the pair created several test environments designed to mimic the gooey milieu that proteins experience inside a cell. Using spectroscopic methods, Stagg and Wittung-Stafshede then probed how the structural content as well as the thermal stability of apoflavodoxin changed as a function of added crowding agents.

At UH, Cheung and graduate student Shao-Qing Zhang used sophisticated computer simulations in a parallel set of tests. In the computer simulations, crowding was mimicked by solid spheres of the same size as the inert polymers used in the test tubes. In the end, the results from the lab and the computer on the same protein matched almost perfectly, lending weight to the final report.

The researchers found the protein's native state becomes more compact and more ordered. The secondary structure of the folded protein increased by as much as 25 percent based on circular dichroism data.

“From the simulations, it is evident that these changes occur in the ends of the helices and in the core, where the peptide chain packs better," Cheung said. Also, the unfolded state becomes more compact, as predicted by excluded volume theory. These effects on the folded and unfolded states made the native state of the protein 20 degrees Celsius more resistant to thermal perturbations.

Wittung-Stafshede said the group is following up with similar in vitro studies of several other proteins. The flavodoxin results and preliminary evidence from follow-up studies indicate that the native state of proteins -- the form they take when they are carrying out their normal functions inside living cells -- may be markedly different from the folded state that scientists most often study in the lab.

"Most lab experiments are done with purified proteins in dilute buffers," Wittung-Stafshede said. "In those conditions, the protein has more space to move around in than it would in its native environment. Our findings may have serious implications for the folding processes of proteins in cells and the structures of enzyme active sites in vivo. We are now beginning to assess the magnitude of these issues in the lab."

Proteins are the workhorses of biology, and their form and function are intertwined. Proteins are chains of amino acids strung end-to-end like beads on a necklace. The order comes from DNA blueprints, but proteins fold into a 3-D shape as soon as the chain is complete, and scientists can determine a protein's function only by studying its folded shape. It is still an open question how a long floppy chain of amino acids is programmed to adopt a unique 3-D shape in a timely manner (often seconds to minutes).

The science of protein folding has grown dramatically in the past decade, due in part to the discovery that misfolded proteins play key roles in diseases like Alzheimer's and Parkinson's.

Jade Boyd | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>