Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study says nitrite/nitrate-rich foods may help in heart attack survival

14.11.2007
Preclinical study by UT-Houston

Nitrite/nitrate found in vegetables, cured meats and drinking water may help you survive a heart attack and recover quicker, according to a pre-clinical study led by a cardiovascular physiologist at The University of Texas Health Science Center at Houston. Findings appear in the Nov. 12 early online edition of the Proceedings of the National Academy of Sciences.

Mice fed an extra helping of nitrite and nitrate fared much better following a heart attack than those on a regular diet. The mice with extra nitrite had 48 percent less cell death in the heart following heart attack. Mice with a low nitrite/nitrate diet had 59 percent greater injury.

Mice with extra nitrite were also more likely to survive a heart attack or myocardial infarction. They had a survival rate of 77 percent compared to 58 percent for the mice that were nitrite deficient.

“This is a very significant finding given the fact that simple components of our diet – nitrite and nitrate – that we have been taught to fear and restrict in food can now protect the heart from injury. Simple changes in our daily dietary habits such as eating nitrite and nitrate rich foods such as fruits and vegetables and some meats in moderation can drastically improve outcome following a heart attack,” said lead author Nathan S. Bryan, Ph.D., an assistant professor at UT-Houston’s Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM).

The study, “Effects of dietary nitrite and nitrate on myocardial ischemia/reperfusion injury” includes co-authors from the Albert Einstein College of Medicine of Yeshiva University: John W. Calvert, Ph.D.; John W. Elrod, Ph.D.; Susheel Gundewar, M.D.; Sang Yong Ji; and David J. Lefer, Ph.D.

The next logical step, according to Bryan, is to potentially monitor patients with known cardiovascular risk factors to determine if supplemental nitrite/nitrate in the diet can decrease the incidence and severity of heart attack and stroke or enhance recovery.

Nitrite forms nitric oxide gas during a heart attack which reopens closed or clogged arteries, thereby reducing the amount of permanent injury to the heart muscle, he said. “This paper provides the first demonstration of the consequences of changes in dietary nitrite and nitrate on nitric oxide biochemistry and the outcome of heart attack,” Bryan said.

This year about 1.2 million Americans will have a first or recurrent heart attack, the American Heart Association reports. About 452,000 of these people will die. Coronary heart disease is the nation’s single leading cause of death.

“Interestingly, formulations of topical nitrite preparations are effective in wound and burn healing. Clinical trials for such uses as well as diabetic skin ulcers are also underway. It appears that dietary supplementation of nitrites and their topical uses will be effective and inexpensive therapies due to their conversion to nitric oxide,” said Ferid Murad, M.D., Ph.D., the 1998 Nobel Laureate for Physiology or Medicine, which he shared for the discovery of nitric oxide as a signaling molecule. He also is director of the IMM’s Center for Cell Signaling.

Although nitric oxide is metabolized to produce nitrite, which in turn produces nitrate, the process can be reversed in the body, allowing nitrite/nitrate laden plasma and heart tissue to create the vessel-widening, nitric oxide gas during oxygen deprivation, Bryan said.

Not limited to heart disease, Bryan believes dietary nitrite/nitrate will also help with other conditions characterized by a sudden disruption of blood or oxygen including stroke or peripheral vascular disease. He is aware of seven clinical trials involving nitrite/nitrate therapy but suggests that nitrite and nitrate should be investigated in terms of preventing disease as well as potential treatments.

Much maligned following a report in the 1960s linking nitrite/nitrate to cancer, according to Bryan, these nitrogen compounds should not be completely excluded from our diets and may one day even be viewed as nutrients. “The public perception is that nitrite/nitrate are carcinogens but they are not,” he said. “Many studies implicating nitrite and nitrate in cancer are based on very weak epidemiological data. If nitrite and nitrate were harmful to us, then we would not be advised to eat green leafy vegetables or swallow our own saliva, which is enriched in nitrate.”

Nitrite and nitrate are natural molecules produced in our body and our main dietary source of circulating nitrite, and nitrate in our body comes from eating vegetables and not cured or processed meats, Bryan pointed out. “Vegetables have up to 100 times more nitrate than processed meats—so, the amount of nitrite and nitrate one may consume in processed or cured meats is far less than one consumes by eating, for example, a spinach salad,” he said.

Bryan recently co-authored a second study also published in the Proceedings of the National Academy of Sciences demonstrating that the body produces massive amounts of nitrite from nitric oxide when oxygen is short supply. Tibetans, living nearly three miles above sea level, have 50 to 100 times more nitrite in their system than people at sea level. “This demonstrates that increasing nitrite availability is a natural, adaptive physiological response to low oxygen and does not cause cancer,” he said.

Rob Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>