Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study says nitrite/nitrate-rich foods may help in heart attack survival

14.11.2007
Preclinical study by UT-Houston

Nitrite/nitrate found in vegetables, cured meats and drinking water may help you survive a heart attack and recover quicker, according to a pre-clinical study led by a cardiovascular physiologist at The University of Texas Health Science Center at Houston. Findings appear in the Nov. 12 early online edition of the Proceedings of the National Academy of Sciences.

Mice fed an extra helping of nitrite and nitrate fared much better following a heart attack than those on a regular diet. The mice with extra nitrite had 48 percent less cell death in the heart following heart attack. Mice with a low nitrite/nitrate diet had 59 percent greater injury.

Mice with extra nitrite were also more likely to survive a heart attack or myocardial infarction. They had a survival rate of 77 percent compared to 58 percent for the mice that were nitrite deficient.

“This is a very significant finding given the fact that simple components of our diet – nitrite and nitrate – that we have been taught to fear and restrict in food can now protect the heart from injury. Simple changes in our daily dietary habits such as eating nitrite and nitrate rich foods such as fruits and vegetables and some meats in moderation can drastically improve outcome following a heart attack,” said lead author Nathan S. Bryan, Ph.D., an assistant professor at UT-Houston’s Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM).

The study, “Effects of dietary nitrite and nitrate on myocardial ischemia/reperfusion injury” includes co-authors from the Albert Einstein College of Medicine of Yeshiva University: John W. Calvert, Ph.D.; John W. Elrod, Ph.D.; Susheel Gundewar, M.D.; Sang Yong Ji; and David J. Lefer, Ph.D.

The next logical step, according to Bryan, is to potentially monitor patients with known cardiovascular risk factors to determine if supplemental nitrite/nitrate in the diet can decrease the incidence and severity of heart attack and stroke or enhance recovery.

Nitrite forms nitric oxide gas during a heart attack which reopens closed or clogged arteries, thereby reducing the amount of permanent injury to the heart muscle, he said. “This paper provides the first demonstration of the consequences of changes in dietary nitrite and nitrate on nitric oxide biochemistry and the outcome of heart attack,” Bryan said.

This year about 1.2 million Americans will have a first or recurrent heart attack, the American Heart Association reports. About 452,000 of these people will die. Coronary heart disease is the nation’s single leading cause of death.

“Interestingly, formulations of topical nitrite preparations are effective in wound and burn healing. Clinical trials for such uses as well as diabetic skin ulcers are also underway. It appears that dietary supplementation of nitrites and their topical uses will be effective and inexpensive therapies due to their conversion to nitric oxide,” said Ferid Murad, M.D., Ph.D., the 1998 Nobel Laureate for Physiology or Medicine, which he shared for the discovery of nitric oxide as a signaling molecule. He also is director of the IMM’s Center for Cell Signaling.

Although nitric oxide is metabolized to produce nitrite, which in turn produces nitrate, the process can be reversed in the body, allowing nitrite/nitrate laden plasma and heart tissue to create the vessel-widening, nitric oxide gas during oxygen deprivation, Bryan said.

Not limited to heart disease, Bryan believes dietary nitrite/nitrate will also help with other conditions characterized by a sudden disruption of blood or oxygen including stroke or peripheral vascular disease. He is aware of seven clinical trials involving nitrite/nitrate therapy but suggests that nitrite and nitrate should be investigated in terms of preventing disease as well as potential treatments.

Much maligned following a report in the 1960s linking nitrite/nitrate to cancer, according to Bryan, these nitrogen compounds should not be completely excluded from our diets and may one day even be viewed as nutrients. “The public perception is that nitrite/nitrate are carcinogens but they are not,” he said. “Many studies implicating nitrite and nitrate in cancer are based on very weak epidemiological data. If nitrite and nitrate were harmful to us, then we would not be advised to eat green leafy vegetables or swallow our own saliva, which is enriched in nitrate.”

Nitrite and nitrate are natural molecules produced in our body and our main dietary source of circulating nitrite, and nitrate in our body comes from eating vegetables and not cured or processed meats, Bryan pointed out. “Vegetables have up to 100 times more nitrate than processed meats—so, the amount of nitrite and nitrate one may consume in processed or cured meats is far less than one consumes by eating, for example, a spinach salad,” he said.

Bryan recently co-authored a second study also published in the Proceedings of the National Academy of Sciences demonstrating that the body produces massive amounts of nitrite from nitric oxide when oxygen is short supply. Tibetans, living nearly three miles above sea level, have 50 to 100 times more nitrite in their system than people at sea level. “This demonstrates that increasing nitrite availability is a natural, adaptive physiological response to low oxygen and does not cause cancer,” he said.

Rob Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>