Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Alzheimer's vaccine?

14.11.2007
Could a new vaccine be the key to stopping Alzheimer’s disease? A new research study from the Oklahoma Medical Research Foundation (OMRF) shows that immunization could offer a way to blunt or even prevent the deadly, memory-robbing disease.

OMRF scientists immunized Alzheimer’s mice with a protein believed to play a key role in the disease-causing process. The mice who received the vaccination showed a significant reduction in the build-up of protein plaques that, when present in the brain for long periods of time, are believed to cause the cell death, memory loss and neurological dysfunction characteristic of Alzheimer’s.

The immunized mice also showed better cognitive performance than control mice that had not received the vaccine.

“These results are extremely exciting,” said Jordan Tang, Ph.D., the OMRF researcher who led the study. “They certainly show that this vaccination approach warrants additional investigation as a therapy for Alzheimer’s disease.”

The new research appears in The Journal of the Federation of American Societies for Experimental Biology.

Tang and his colleagues at OMRF previously had identified the cutting enzyme (known as memapsin 2) that creates the protein fragments believed to be the culprit behind Alzheimer’s. In the current study, researchers used mice that had been genetically engineered to develop symptoms of Alzheimer’s, then immunized the animals with memapsin 2.

“What we saw is that the mice immunized with memapsin 2 developed 35 percent fewer plaques than their non-vaccinated counterparts,” said Tang. “Those immunized mice also performed better than control mice in tests designed to assess their cognitive function.”

Tang’s work with memapsin 2 also has led to the creation of an experimental drug to treat Alzheimer’s disease. That drug, which works by inhibiting the cutting enzyme, began human clinical trials in the summer of 2007.

Tang emphasized that the vaccine approach should be viewed as a supplement to—rather than substitute for—the experimental inhibitor and other treatments currently in development for the illness.

“Alzheimer’s is a complicated, multi-faceted disease,” said the OMRF researcher. “As with illnesses like cancer and heart disease, Alzheimer’s demands that we develop many different approaches to combat it. We cannot rely on a 'one-size-fits-all' strategy, because what works in one patient will not necessarily work in another.”

A vaccination approach—getting the immune system to clean up the plaques—has been considered a promising way to tackle the disease, but its success has been limited. In 2002, for example, the pharmaceutical company Elan halted trials of a different vaccine after 15 patients suffered swelling of the central nervous system.

OMRF President Stephen Prescott, M.D., is hopeful that Tang’s work will avoid the pitfalls that beset Elan’s vaccine. “This vaccination stimulates the immune system more gently than previous Alzheimer’s vaccines, so we are optimistic about its prospects going forward,” he said. “Once again, Dr. Tang has found an innovative way to make inroads against a devastating and poorly understood disease.”

The next step, said Tang, will be to progress the work to the point that it can be tested in humans. “There currently is no effective treatment for Alzheimer’s disease, so we must explore every possible option to find a way to stop it,” he said.

The research was supported, in part, by a grant from the Alzheimer’s Association.

“The Alzheimer’s Association is pleased to provide funding for innovative work such as this to develop possible new therapies for Alzheimer's,” said William Thies, Ph.D., vice president for Medical & Scientific Relations at the Alzheimer’s Association. “It is important to encourage imaginative researchers to test unconventional strategies, as Dr. Tang has done here. We face an overwhelming epidemic of Alzheimer's and dementia if we don't change the current unsatisfactory situation by greatly improving early detection, treatment and prevention.”

Adam Cohen | EurekAlert!
Further information:
http://www.omrf.org

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>