Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU research team makes progress toward 'printing' organs

08.11.2007
Biology-based process maintains cell properties and lets nature do the rest

Each year, pharmaceutical companies invest millions of dollars to test drugs, many of which will never reach the market because of side effects found only during human clinical trials. At the same time, the number of patients waiting for organ transplants continues to increase. In the past 10 years, this number has nearly doubled. Now, a new study led by a University of Missouri-Columbia physics researcher might present new solutions to both problems with the help of a very special printer.

For the past four years, Gabor Forgacs, the George H. Vineyard Professor of Physics in the MU College of Arts and Science, has been working to refine the process of “printing” tissue structures of complex shape with the aim of eventually building human organs. In the latest study, a research team led by Forgacs determined that the process of building such structures by printing does not harm the properties of the composing cells and the process mimics the naturally occurring biological assembly of living tissues.

In the study, the team used bio-ink particles, or spheres containing 10,000 to 40,000 cells, and assembled, or “printed,” them on to sheets of organic, cell friendly “bio-paper.” Once printed, the spheres began to fuse in the bio-paper into one structure, much the same way that drops of water will fuse to form a larger drop of water.

“If you wait for a long time, eventually all the small spheres will fuse into one large sphere,” Forgacs said. “To prevent that from happening, we can remove the bio-paper and stop the fusion process once the desired shape has formed. Through this bio-printing process, we were able to build, for the first time, functional tissue structures.”

In the past, there have been two concerns with printing extended tissue structures using large amounts of cells. First, scientists needed to determine how to get specific cells to the correct locations within the structures. Second, even though the right cells might be in the right place within the structure, there was a problem of function. How do you make an organ start working?

As the Mizzou research team found in the study, there appears to be no need to worry about either of these concerns. As the tissue structure begins to form, the cells go through a natural process called “sorting,” which is nature’s way of determining where specific cells need to be. For example, an artery has three specific types of cells – endothelial cells, smooth muscle cells and fibroblast cells, each type needing to be in a specific location in the artery. As thousands and thousands of cells are added to the bio-paper under controlled conditions, the cells migrate automatically to their specific locations to make the structure form correctly.

The team also found that nature was the answer to the second question. In the study, scientists took cells from a chicken heart and used them to form bio-ink particles, which were then printed on to thick sheets. Heart cells must be synchronized for the heart to beat properly. When the bio-ink particles were first printed, the cells did not beat in unison, but as the cellular spheroids fused, the structure eventually started beating just as a heart does.

“This study shows that we can use multiple cell types and that we do not have to control what happens when the cells fuse together,” Forgacs said. “Nature is smart enough to do the job.”

The study is being published in an upcoming edition of Tissue Engineering and was funded by a $5 million grant from the National Science Foundation. Forgacs also has become involved with a company, Organovo, Inc., which is interested in licensing the technology. He also plans to work with drug companies to provide them with tissues they can use to test drugs, prior to human clinical trials.

Currently, drugs are tested first on animals and then go through a human clinical stage. Because of the major differences in biological function, humans often have different reactions than animals. Forgacs believes that providing human tissue structures that resemble organs to the drug companies will make drug testing cheaper and much more efficient.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>