Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU research team makes progress toward 'printing' organs

08.11.2007
Biology-based process maintains cell properties and lets nature do the rest

Each year, pharmaceutical companies invest millions of dollars to test drugs, many of which will never reach the market because of side effects found only during human clinical trials. At the same time, the number of patients waiting for organ transplants continues to increase. In the past 10 years, this number has nearly doubled. Now, a new study led by a University of Missouri-Columbia physics researcher might present new solutions to both problems with the help of a very special printer.

For the past four years, Gabor Forgacs, the George H. Vineyard Professor of Physics in the MU College of Arts and Science, has been working to refine the process of “printing” tissue structures of complex shape with the aim of eventually building human organs. In the latest study, a research team led by Forgacs determined that the process of building such structures by printing does not harm the properties of the composing cells and the process mimics the naturally occurring biological assembly of living tissues.

In the study, the team used bio-ink particles, or spheres containing 10,000 to 40,000 cells, and assembled, or “printed,” them on to sheets of organic, cell friendly “bio-paper.” Once printed, the spheres began to fuse in the bio-paper into one structure, much the same way that drops of water will fuse to form a larger drop of water.

“If you wait for a long time, eventually all the small spheres will fuse into one large sphere,” Forgacs said. “To prevent that from happening, we can remove the bio-paper and stop the fusion process once the desired shape has formed. Through this bio-printing process, we were able to build, for the first time, functional tissue structures.”

In the past, there have been two concerns with printing extended tissue structures using large amounts of cells. First, scientists needed to determine how to get specific cells to the correct locations within the structures. Second, even though the right cells might be in the right place within the structure, there was a problem of function. How do you make an organ start working?

As the Mizzou research team found in the study, there appears to be no need to worry about either of these concerns. As the tissue structure begins to form, the cells go through a natural process called “sorting,” which is nature’s way of determining where specific cells need to be. For example, an artery has three specific types of cells – endothelial cells, smooth muscle cells and fibroblast cells, each type needing to be in a specific location in the artery. As thousands and thousands of cells are added to the bio-paper under controlled conditions, the cells migrate automatically to their specific locations to make the structure form correctly.

The team also found that nature was the answer to the second question. In the study, scientists took cells from a chicken heart and used them to form bio-ink particles, which were then printed on to thick sheets. Heart cells must be synchronized for the heart to beat properly. When the bio-ink particles were first printed, the cells did not beat in unison, but as the cellular spheroids fused, the structure eventually started beating just as a heart does.

“This study shows that we can use multiple cell types and that we do not have to control what happens when the cells fuse together,” Forgacs said. “Nature is smart enough to do the job.”

The study is being published in an upcoming edition of Tissue Engineering and was funded by a $5 million grant from the National Science Foundation. Forgacs also has become involved with a company, Organovo, Inc., which is interested in licensing the technology. He also plans to work with drug companies to provide them with tissues they can use to test drugs, prior to human clinical trials.

Currently, drugs are tested first on animals and then go through a human clinical stage. Because of the major differences in biological function, humans often have different reactions than animals. Forgacs believes that providing human tissue structures that resemble organs to the drug companies will make drug testing cheaper and much more efficient.

Christian Basi | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>