Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First-Ever Study: Lack of Critical Lubricant Causes Wear in Joints

07.11.2007
For the first time, researchers have linked increased friction with early wear in the joints of animals. Work led by Brown University physician and engineer Gregory Jay, M.D., shows mice that do not produce the protein lubricin begin to show wear in their joints less than two weeks after birth. This finding not only points up the protective power of lubricin but also suggests that it could be used to prevent joint wear after an injury.

Mice that don’t produce lubricin, a thin film of protein found in the cartilage of joints, showed early wear and higher friction in their joints, a new study led by Brown University researchers shows.

This link between increased friction and early wear in joints is a first; no other team of scientists has proven this association before. The finding, published in Arthritis & Rheumatism, sheds important light on how joints work. The discovery also suggests that lubricin, or a close cousin, could be injected directly into hips, knees or other joints inflamed from arthritis or injury – a preventive treatment that could reduce the need for painful and costly joint replacement surgery.

In an editorial that accompanies the journal article, orthopedics researchers from Rush University Medical Center in Chicago call the research an “important contribution to the field” and note that the use of biomolecules like lubricin to prevent joint wear “could have a substantial clinical impact, if successful.”

Gregory Jay, M.D, a Rhode Island Hospital emergency physician and an associate professor of emergency medicine and engineering at Brown, led the research. For 20 years, Jay has studied lubricin’s role as a “boundary lubricant” by reducing friction between opposing layers of cartilage inside joints. In this new work, Jay and his colleagues set out to answer the next question: Does reducing friction actually prevent wear, or surface damage, in joints?

To find out, Jay and his team studied cartilage from the knees of mice that don’t produce lubricin. Directly after birth, the cartilage was smooth. But in as little as two weeks, researchers found, the cartilage began to show signs of wear. Under an electron microscope, scientists could see that the collagen fibers that cartilage is composed of were breaking up, giving the surface a rough, frayed appearance. This damage is called wear, an early sign of joint disease or injury.

Jay and his team then took the work a step further. To better understand how lubricin works, they tried to see the structure of the film. So they put a tiny bit of the protein under an atomic force microscope. At the nanoscale, the molecule appeared as a mesh – row upon row of interlocking fibers – that could repel a microscope probe. This repulsion, created with water and electrical charges, shows how lubricin acts as a buffer, keeping opposing layers of cartilage apart.

“We demonstrated that lubricin reduces both friction and wear and also showed how, on a molecular level, it does this work in the body,” Jay said. “What’s exciting are the clinical implications. Arthritis and sports injuries damage the joints of thousands of people in the United States and millions of people worldwide each year. Our aim is to make a treatment that can actually prevent wear in the joints.”

Through Rhode Island Hospital, Jay has filed two patents on the protein and its sequences and, in 2004, helped form Tribologics, a biotech company formed out of Rhode Island Hospital. The Massaschusetts-based business is developing an injection treatment for inflamed joints that contains lubricin.

Members of the research team included Jahn Torres, a former Brown graduate student in engineering; David Rhee, a former graduate student at Case Western Reserve University; Heikki Helminen, M.D., and Mika Hytinnen, M.D., from the University of Kuopio in Finland; Chung-Ja Cha, a research assistant at Rhode Island Hospital; Khaled Elsaid, a postdoctoral research fellow at Rhode Island Hospital; Kyung-Suk Kim, a professor of engineering at Brown; and Yajun Cui, M.D., and Matthew Warman, M.D., of Boston Children’s Hospital and Harvard Medical School.

The National Institute of Arthritis and Musculoskelatal and Skin Diseases funded the work, along with the Academy of Finland, the McCutchen Foundation, the Howard Hughes Medical Institute and the Burroughs Wellcome Fund.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interviews and maintains an ISDN line for radio interviews. For more information, call the Office of Media Relations at (401) 863-2476.

Wendy Lawton | EurekAlert!
Further information:
http://www.brown.edu

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>