Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

D-cycloserine reduces cocaine-seeking behavior in 'addicted' mice

07.11.2007
Antibiotic that appears to control phobias may also be useful in treating addiction

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory provide further evidence that a drug known as D-cycloserine could play a role in helping to extinguish the craving behaviors associated with drug addiction. Their study found that mice treated with D-cycloserine were less likely to spend time in an environment where they had previously been trained to expect cocaine than mice treated with a placebo.

"Since the association between drugs and the places where they are used can trigger craving and/or relapse in humans, a medication that could aid in the reduction or even extinction of such responses could be a powerful tool in the treatment of addiction," said Carlos Bermeo, a Stony Brook University graduate student working under the direction of Brookhaven Lab neuroscientist Panayotis (Peter) Thanos. Bermeo will present these results in a talk at the Society for Neuroscience annual meeting in San Diego on Tuesday, November 6, 2007, at 11 a.m.

D-cycloserine was originally developed as an antibiotic. But it has also been shown to extinguish conditioned fear in pre-clinical (animal) studies, and has been successfully tested in human clinical trials for the treatment of acrophobia (fear of heights). This finding led several researchers to wonder whether D-cycloserine could extinguish drug-seeking behaviors as well.

In 2006, a group of scientists not affiliated with Brookhaven Lab tested this hypothesis in rats. They found that D-cycloserine facilitated the extinction of "cocaine conditioned place preference" - the tendency for the animals to spend more time in a chamber where they had been trained to expect cocaine than in a chamber where they had no access to the drug.

The Brookhaven study builds on the previous work and adds information on the drug dose effect, the lasting properties of the treatment, and the locomotor effects of this compound.

Bermeo and Thanos' group worked with C57bL/c mice. Animals were first trained to receive cocaine in a particular environment. Once conditioned place preference was established (that is, animals willingly spent more time in a cocaine-paired environment than in a "neutral" environment), the mice were treated with either D-cycloserine or saline and allowed to spend forty minutes in either the previously cocaine-paired environment (with the drug no longer available) or the neutral environment.

"This paradigm would be analogous to a clinical approach where the addict is returned to the environment that previously was the place of drug use (e.g., the neighborhood or home), but this time with no drug available," said Thanos. "Reduced seeking of the drug in the same environment - that is extinction behavior - is a great indicator of future success in treatment and reduced chance of relapse," he added.

Mice treated with D-cycloserine showed less preference for the cocaine-paired environment and did this more rapidly than mice treated with saline. The low dose (15 milligrams D-cycloserine per kilogram of body weight, given intraperitonially) showed a 10 percent decrease in time spent in the previously cocaine-paired environment, and the high dose (30 mg/kg i.p.) showed a 17 percent decrease in the time spent in the previously cocaine-paired environment. The high dose produced a more pronounced and consistent extinction than the lower dose.

Interestingly, animals treated with the high dose of D-cycloserine exhibited lower locomotor activity compared to both the low-dose D-cycloserine group and the saline-treated animals. These two groups exhibited similar levels of locomotor activity. This indicates that dosing may have to be fine tuned to achieve optimal efficacy with minimum side effects.

"It's important to remember that these are very preliminary results from a small animal study," Thanos cautions. "Much further research will be required before testing this drug in humans. But it is inspiring to know that this drug may show promise in treating cocaine addiction, which continues to take a toll on society and for which no pharmacological treatment currently exists."

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>