Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene governs IQ boost from breastfeeding

The known association between breast feeding and slightly higher IQ in children has been shown to relate to a particular gene in the babies, according to a report this week in the Proceedings of the National Academy of Sciences.

In two studies of breast-fed infants involving more than 3,000 children in Britain and New Zealand, breastfeeding was found to raise intelligence an average of nearly 7 IQ points if the children had a particular version of a gene called FADS2.

"There has been some criticism of earlier studies about breastfeeding and IQ that they didn't control for socioeconomic status, or the mother's IQ or other factors, but our findings take an end-run around those arguments by showing the physiological mechanism that accounts for the difference," said Terrie Moffitt, a professor of psychological and brain sciences in Duke University's Institute for Genome Sciences and Policy.

Moffitt, who performed the research with her husband and co-author Avshalom Caspi at King's College in London, found that the baby's intellectual development is influenced by both genes and environment or, more specifically, by the interaction of its genes with its environment.

"The argument about intelligence has been about nature versus nurture for at least a century," Moffitt said. "We're finding that nature and nurture work together."

Ninety percent of the children in the two study groups had at least one copy of the "C" version of FADS2, which yielded higher IQ if they were breast-fed. The other 10 percent, with only the "G" versions of the gene, showed no IQ advantage or disadvantage from breastfeeding.

The gene was singled out for the researchers' attention because it produces an enzyme that helps convert dietary fatty acids into the polyunsaturated fatty acids DHA (docosahexaenoic acid) and AA (arachidonic acid) that have been shown to accumulate in the human brain during the first months after birth.

Since the first findings about breastfeeding and IQ appeared a decade ago, many formula makers have added DHA and AA fatty acids to their products. The children in these studies however were born in 1972-73 in New Zealand and 1994-95 in England, before fatty acid supplementation in formula began.

Though the jury is still out on whether such supplementation has made a difference in humans, laboratory studies in which rodents and primates were fed supplemental fatty acids have shown increased brain DHA concentrations and enhanced abilities in tests of learning, memory and problem-solving.

"Our findings support the idea that the nutritional content of breast milk accounts for the differences seen in human IQ," Moffitt said. "But it's not a simple all-or-none connection: it depends to some extent on the genetic makeup of each infant."

Moffitt and Caspi joined the Duke faculty in August, but are finishing up their research in London before moving to Durham in December.

Moffitt noted that the researchers aren't particularly interested in IQ or breastfeeding, per se. Rather, this study fits into a body of work they have done on gene-environment interactions and the brain.

"We're more interested in proving to the psychiatric community that genes usually have a physiological effect," Moffitt said. "When looking at depression or intelligence, the key bit that's often left out here is the environmental effects."

Karl Leif Bates | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>