Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene governs IQ boost from breastfeeding

07.11.2007
The known association between breast feeding and slightly higher IQ in children has been shown to relate to a particular gene in the babies, according to a report this week in the Proceedings of the National Academy of Sciences.

In two studies of breast-fed infants involving more than 3,000 children in Britain and New Zealand, breastfeeding was found to raise intelligence an average of nearly 7 IQ points if the children had a particular version of a gene called FADS2.

"There has been some criticism of earlier studies about breastfeeding and IQ that they didn't control for socioeconomic status, or the mother's IQ or other factors, but our findings take an end-run around those arguments by showing the physiological mechanism that accounts for the difference," said Terrie Moffitt, a professor of psychological and brain sciences in Duke University's Institute for Genome Sciences and Policy.

Moffitt, who performed the research with her husband and co-author Avshalom Caspi at King's College in London, found that the baby's intellectual development is influenced by both genes and environment or, more specifically, by the interaction of its genes with its environment.

"The argument about intelligence has been about nature versus nurture for at least a century," Moffitt said. "We're finding that nature and nurture work together."

Ninety percent of the children in the two study groups had at least one copy of the "C" version of FADS2, which yielded higher IQ if they were breast-fed. The other 10 percent, with only the "G" versions of the gene, showed no IQ advantage or disadvantage from breastfeeding.

The gene was singled out for the researchers' attention because it produces an enzyme that helps convert dietary fatty acids into the polyunsaturated fatty acids DHA (docosahexaenoic acid) and AA (arachidonic acid) that have been shown to accumulate in the human brain during the first months after birth.

Since the first findings about breastfeeding and IQ appeared a decade ago, many formula makers have added DHA and AA fatty acids to their products. The children in these studies however were born in 1972-73 in New Zealand and 1994-95 in England, before fatty acid supplementation in formula began.

Though the jury is still out on whether such supplementation has made a difference in humans, laboratory studies in which rodents and primates were fed supplemental fatty acids have shown increased brain DHA concentrations and enhanced abilities in tests of learning, memory and problem-solving.

"Our findings support the idea that the nutritional content of breast milk accounts for the differences seen in human IQ," Moffitt said. "But it's not a simple all-or-none connection: it depends to some extent on the genetic makeup of each infant."

Moffitt and Caspi joined the Duke faculty in August, but are finishing up their research in London before moving to Durham in December.

Moffitt noted that the researchers aren't particularly interested in IQ or breastfeeding, per se. Rather, this study fits into a body of work they have done on gene-environment interactions and the brain.

"We're more interested in proving to the psychiatric community that genes usually have a physiological effect," Moffitt said. "When looking at depression or intelligence, the key bit that's often left out here is the environmental effects."

Karl Leif Bates | EurekAlert!
Further information:
http://www.duke.edu

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>