Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study Identifies Novel Gene Alterations in Lung Cancer

05.11.2007
Comprehensive Analysis Provides New View of Genomic Landscape Of Leading Cause of Cancer Deaths

An international team of scientists, supported in part by the National Human Genome Research Institute (NHGRI), one of the National Institutes of Health (NIH), today announced that its systematic effort to map the genomic changes underlying lung cancer has uncovered a critical gene alteration not previously linked to any form of cancer.

The research, published in the advance online issue of the journal Nature, also revealed more than 50 genomic regions that are frequently gained or lost in lung adenocarcinoma, the most common type of lung cancer in the United States.

“This view of the lung cancer genome is unprecedented, both in its breadth and depth,” said senior author Matthew Meyerson, M.D., Ph.D., a senior associate member of the Broad Institute of MIT and Harvard in Cambridge, Mass., and an associate professor at Dana-Farber Cancer Institute and Harvard Medical School in Boston. “It lays an essential foundation, and has already pinpointed an important gene that controls the growth of lung cells. This information offers crucial inroads to the biology of lung cancer and will help shape new strategies for cancer diagnosis and therapy.”

Each year more than 1 million people worldwide die of lung cancer, including more than 150,000 in the United States. The new study focused on lung adenocarcinoma, which, according to the National Cancer Institute (NCI), is the most frequently diagnosed form of lung cancer in the United States, accounting for approximately 30 percent of cases.

New approaches to cancer treatment rely on a deeper understanding of what goes wrong in tumor cells to spur uncontrolled growth. Through decades of research, it has become clear that lung cancer — like most human cancers — stems mainly from DNA changes that accrue in cells throughout a person’s life. But the nature of these changes and their biological consequences remain largely unknown, which has inspired the recent formation of multi-disciplinary teams that are using new genomic tools and technologies to study cancer in a more systematic, comprehensive manner.

The latest study was conducted as part of the Tumor Sequencing Project (TSP), an ongoing effort to apply large-scale approaches to the identification of genomic changes in lung adenocarcinoma. NHGRI is a major funder of TSP, which unites scientists and clinicians throughout the cancer research community.

“This outstanding work clearly demonstrates the value of comprehensive approaches for exploring the genomic underpinnings of cancer. The impacts of these findings extend far beyond lung cancer and indicate that many more important cancer-related genes still await our discovery,” NHGRI Director Francis S. Collins, M.D., Ph.D. “Now, we must forge ahead and apply this strategy as quickly as possible to other common types of cancer.”

Specifically, the TSP researchers uncovered a total of 57 genomic changes that occur frequently in lung cancer patients. Of these changes, more than 40 appear to be associated with genes not previously known to be involved in lung adenocarcinoma. More research is needed to precisely identify and characterize these genes, but researchers are excited by the possibility that their findings may suggest new ways of attacking this deadly cancer.

The most common abnormality identified by the TSP team involves a region on chromosome 14 that encompasses two known genes, neither of which had been previously associated with cancer. Through additional studies in cancer cells, the researchers discovered that one of the genes, NKX2.1, influences cancer cell growth. NKX2.1 normally acts as a master regulator that controls the activity of other key genes in cells lining the lungs’ tiny air sacs, called alveoli. The discovery that a gene functioning in a select group of cells — rather than in all cells — can promote cancer growth may have broad implications for the design of drugs for a wide range of cancers.

“The genomic landscape of lung cancer gives us a systematic picture of this terrible disease, confirming things we know, but also pointing us to many missing pieces of the puzzle. More broadly, the study represents a general approach that can and should be used to analyze all types of cancer,” said Eric Lander, Ph.D., one of the study’s co-authors and founding director of the Broad Institute of MIT and Harvard.

The TSP is helping to establish the groundwork for future large-scale cancer genome projects, including The Cancer Genome Atlas (TCGA). In December 2005, NHGRI and NCI launched the TCGA pilot to test the feasibility of a comprehensive, systematic approach to exploring the genomics of a wide range of common human cancers. In its pilot phase, TCGA is focusing on glioblastoma multiforme, the most common form of brain cancer; ovarian cancer; and squamous cell lung cancer, which, according to NCI, accounts for about 20 percent of lung cancer cases in the United States.

In addition to Drs. Meyerson and Lander, the scientific leaders of the TSP include Harold Varmus, M.D., Memorial Sloan-Kettering Cancer Center, New York; Richard Gibbs, Ph.D., Baylor College of Medicine, Houston; and Richard Wilson, Ph.D., Washington University School of Medicine, Saint Louis.

The TSP researchers studied more than 500 tumor specimens from lung cancer patients. Access to this large collection of high-quality samples made it possible to determine the genetic changes shared among different patients, which is important because shared changes can highlight important genes involved in cancer growth.

To analyze the DNA from each lung tumor, the scientists relied on recent genomic technologies to scan the human genome for hundreds of thousands of genetic markers, called single nucleotide polymorphisms, or SNPs. This high-resolution view helped researchers detect parts of the genome that were present in excess copies or missing altogether in the tumor samples. These regions of genomic aberration were then more finely delineated using new analytical tools, including a computational method called GISTIC and methods for visualizing SNP data.

In its second phase, TSP is examining the same lung tumor samples analyzed in the first phase, but at an even greater level of genetic detail. Using high-throughput DNA sequencing methods, the scientists will characterize small changes in the genetic code of several hundred human genes that function in cancer and more generally in cell growth.

“We look forward to applying the power of large-scale sequencing to this complex challenge,” said Dr. Wilson, head of the Washington University Genome Sequencing Center. “By zeroing in on the genetic changes involved in lung adenocarcinoma, we hope to learn much more about this deadly cancer. This research should also lead to better strategies for identifying vulnerabilities within all types of cancerous cells.”

Dr. Gibbs, head of the Human Genome Sequencing Center at Baylor, said, “This project has pulled together an amazing collection of scientific talent to tackle a most formidable opponent: lung cancer. By working together, we hope to generate data that will serve as an effective tool for developing new ways to detect, treat and, ultimately, prevent this disease.”

The TSP team includes NHGRI’s three large-scale sequencing centers at Baylor College of Medicine, Broad Institute of MIT and Harvard, and Washington University School of Medicine. Other members of TSP are cancer researchers at Brigham and Women’s Hospital, Boston; Dana-Farber Cancer Institute; M.D. Anderson Cancer Center, Houston; Memorial Sloan-Kettering Cancer Center; the University of Michigan, Ann Arbor; and Washington University School of Medicine. Investigators from Nagoya City University, Japan; the Ontario Cancer Institute/Princess Margaret Hospital, Toronto; and the University of Texas-Southwestern Medical School, Dallas, also participated in the SNP portion of the study.

All data generated by the TSP are being made available to the scientific community in public databases. For information on how to access the databases, go to: http://www.genome.gov/cancersequencing .

Geoff Spencer | NHGRI News
Further information:
http://www.cancer.gov
http://www.genome.gov/cancersequencing
http://www.nih.gov

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Camera on NASA's Lunar Orbiter survived 2014 meteoroid hit

29.05.2017 | Physics and Astronomy

Strathclyde-led research develops world's highest gain high-power laser amplifier

29.05.2017 | Physics and Astronomy

A 3-D look at the 2015 El Niño

29.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>