Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into inflammation in osteoarthritis

30.10.2007
Study indicates role of inflammatory mechanism distinct from joint cartilage

The most common degenerative joint disease, osteoarthritis (OA) is marked by the breakdown of articular cartilage, which is the type of cartilage that lines the ends of most limb bones.

It can afflict any joint—fingers, toes, wrists, ankles, elbows, shoulders, and the spine, as well as the weight-bearing knees and hips. As OA progresses, sufferers often experience inflammation around the affected joint. This inflammation has been attributed to bits of cartilage breaking off and aggravating the synovium, the thin, smooth membrane lining a joint.

Yet, MRI detection of prominent synovitis in early OA—when joint cartilage appears normal—suggests that other joint structures may be involved in triggering this inflammation. Recent studies of inflammation in spinal arthritis implicate the enthesis, which is the attachment site of ligament or tendon to bone as being a potential driving factor in joint inflammation.

Intrigued by the potential role of tendon or ligament attachment sites in synovitis, Professors Michael Benjamin of Cardiff University and Dennis McGonagle of the University of Leeds decided to investigate the extent to which different entheses could contribute to inflammation by forming a functional unit and destructive partnership with adjacent synovium. Featured in the November 2007 issue of Arthritis & Rheumatism (http://www.interscience.wiley.com/journal/arthritis), their findings shed light on a potential novel mechanism for synovial inflammation in degenerative arthritis. This is based on a structure that the authors have called the “synovial-entheseal complex” (SEC). Basically insertions have a different type of cartilage called fibrocartilage near the bone. Although this is different from articular cartilage that lines the ends of bones, the authors speculated that this type of cartilage could also derive nourishment from synovium. However, this close integration although desirable in health could have unfortunate consequences if the enthesis was damaged.

To validate the widespread formation and to explore further, the possible inflammatory function of SECs, researchers collected ligament and tendon attachment samples from 60 cadavers, 35 male and 25 female, with a mean age of 84 years at death. 49 different entheses—19 from the arms, 26 from the legs, and 4 from the spinal column—were preserved for examination. To exclude cartilage degeneration as a trigger for synovial inflammation, 17 of the selected entheses were not immediately adjacent to joint cartilage. Each sample was studied for evidence of inflammatory cells and soft tissue microdamage, as well as for the composition of SECs.

At 82 percent of the entheses, the formation of a SEC was found. As expected, this occurred in entheses very close to joint cartilage, where the synovium was often part of the joint itself. However, a SEC was also detected in 47 percent of the sites separated from joint cartilage. For example, the SEC found at the Achilles tendon was formed with synovium that protruded from a cavity called a “bursa”, located a considerable distance from the ankle joint.

Joint insertions are sites of high mechanical stressing and the authors speculated that this could lead to damage within them, including their fibrocartilage This is exactly what the authors found. Degenerative changes—at least one and sometimes several—were detected on the soft tissue side of attachment sites. Most notably, cell clustering and/or fissuring was found in 76 percent of entheses. In 85 percent of SECs, the synovial component also showed evidence of mild inflammatory change. Finally, in 73 percent of the attachments, small numbers of inflammatory cells were present in the enthesis itself. Therefore the authors suggest that joint degeneration of fibrocartilage at insertions could trigger inflammation within SECs.

As Professors Benjamin and McGonagle note, one their most striking findings was the large number of attachment sites with evidence of changes in the entheses mirroring those typically seen in joint cartilage in OA—fibrocartilage cell clusters, cell hypertrophy, and fissuring among them. “Such changes at certain entheses could be directly relevant to older subjects with joint symptoms due to degenerative disease,” Professor McGonagle observes, “and some of the symptoms could be emanating from the SEC.”

Affirming the concept of a “synovio-etheseal complex” as widely applicable at many sites in the body, both right next to and removed from joint cartilage, this study also supports the idea that biomechanical factors related to the enthesis could play an important role in synovial inflammation in both degenerative and inflammatory arthritis.

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

nachricht Disarray in the brain
18.12.2017 | Universität zu Lübeck

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Physicists have learned to change the wavelength of Tamm plasmons

24.01.2018 | Physics and Astronomy

When the eyes move, the eardrums move, too

24.01.2018 | Health and Medicine

Deaf children learn words faster than hearing children

24.01.2018 | Health and Medicine

VideoLinks Science & Research
Overview of more VideoLinks >>>