Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insights into inflammation in osteoarthritis

30.10.2007
Study indicates role of inflammatory mechanism distinct from joint cartilage

The most common degenerative joint disease, osteoarthritis (OA) is marked by the breakdown of articular cartilage, which is the type of cartilage that lines the ends of most limb bones.

It can afflict any joint—fingers, toes, wrists, ankles, elbows, shoulders, and the spine, as well as the weight-bearing knees and hips. As OA progresses, sufferers often experience inflammation around the affected joint. This inflammation has been attributed to bits of cartilage breaking off and aggravating the synovium, the thin, smooth membrane lining a joint.

Yet, MRI detection of prominent synovitis in early OA—when joint cartilage appears normal—suggests that other joint structures may be involved in triggering this inflammation. Recent studies of inflammation in spinal arthritis implicate the enthesis, which is the attachment site of ligament or tendon to bone as being a potential driving factor in joint inflammation.

Intrigued by the potential role of tendon or ligament attachment sites in synovitis, Professors Michael Benjamin of Cardiff University and Dennis McGonagle of the University of Leeds decided to investigate the extent to which different entheses could contribute to inflammation by forming a functional unit and destructive partnership with adjacent synovium. Featured in the November 2007 issue of Arthritis & Rheumatism (http://www.interscience.wiley.com/journal/arthritis), their findings shed light on a potential novel mechanism for synovial inflammation in degenerative arthritis. This is based on a structure that the authors have called the “synovial-entheseal complex” (SEC). Basically insertions have a different type of cartilage called fibrocartilage near the bone. Although this is different from articular cartilage that lines the ends of bones, the authors speculated that this type of cartilage could also derive nourishment from synovium. However, this close integration although desirable in health could have unfortunate consequences if the enthesis was damaged.

To validate the widespread formation and to explore further, the possible inflammatory function of SECs, researchers collected ligament and tendon attachment samples from 60 cadavers, 35 male and 25 female, with a mean age of 84 years at death. 49 different entheses—19 from the arms, 26 from the legs, and 4 from the spinal column—were preserved for examination. To exclude cartilage degeneration as a trigger for synovial inflammation, 17 of the selected entheses were not immediately adjacent to joint cartilage. Each sample was studied for evidence of inflammatory cells and soft tissue microdamage, as well as for the composition of SECs.

At 82 percent of the entheses, the formation of a SEC was found. As expected, this occurred in entheses very close to joint cartilage, where the synovium was often part of the joint itself. However, a SEC was also detected in 47 percent of the sites separated from joint cartilage. For example, the SEC found at the Achilles tendon was formed with synovium that protruded from a cavity called a “bursa”, located a considerable distance from the ankle joint.

Joint insertions are sites of high mechanical stressing and the authors speculated that this could lead to damage within them, including their fibrocartilage This is exactly what the authors found. Degenerative changes—at least one and sometimes several—were detected on the soft tissue side of attachment sites. Most notably, cell clustering and/or fissuring was found in 76 percent of entheses. In 85 percent of SECs, the synovial component also showed evidence of mild inflammatory change. Finally, in 73 percent of the attachments, small numbers of inflammatory cells were present in the enthesis itself. Therefore the authors suggest that joint degeneration of fibrocartilage at insertions could trigger inflammation within SECs.

As Professors Benjamin and McGonagle note, one their most striking findings was the large number of attachment sites with evidence of changes in the entheses mirroring those typically seen in joint cartilage in OA—fibrocartilage cell clusters, cell hypertrophy, and fissuring among them. “Such changes at certain entheses could be directly relevant to older subjects with joint symptoms due to degenerative disease,” Professor McGonagle observes, “and some of the symptoms could be emanating from the SEC.”

Affirming the concept of a “synovio-etheseal complex” as widely applicable at many sites in the body, both right next to and removed from joint cartilage, this study also supports the idea that biomechanical factors related to the enthesis could play an important role in synovial inflammation in both degenerative and inflammatory arthritis.

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>