Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hold Your Horses

26.10.2007
A new study illuminates some of the brain's decision-making process and how a popular treatment for Parkinson's can have unintended consequences.

For those who suffer with the debilitating symptoms of Parkinson's disease, deep brain stimulation offers relief from the tremors and rigidity that can't be controlled by medicine. A particularly troublesome downside, though, is that these patients often exhibit compulsive behaviors that healthy people, and even those taking medication for Parkinson's, can easily manage.

Michael Frank, an assistant professor of psychology and director of the Laboratory for Neural Computation and Cognition at The University of Arizona, and his research colleagues have shed some light on how DBS interferes with the brain's innate ability to deliberate on complicated decisions. Their results are published in the Oct. 26 issue of the journal Science.

DBS implants affect the region of the brain called the subthalamic nucleus, known as STN, which also modulates decision making.

"This particular area of the brain is needed for what's called a 'hold-your-horses' signal," Frank said. "When you're making a difficult choice, with a conflict between two or more options, an adaptive response for your system to do is to say 'Hold on for a second. I need to take a little more time to figure out which is the best option.'"

The STN, he said, detects conflict between two or more choices and reacts by sending a neural signal to temporarily prevent the selection of any response. It's this response that DBS seems to interrupt. DBS acts much like a lesion on the subthalamic nucleus. Frank's hypothesis predicted that DBS would negate the "hold-your-horses" response to high-conflict choices. Surprisingly, it actually sped up the decision-making process – a signature, he said, of impulsive decision making.

The tendency toward impulsive behavior in Parkinson's patients is well-documented but only dimly understood. How is the STN involved in decision making and why should things go awry when you stimulate it?

For those taking them, medications did not slow down decision-making conflict. Regardless of whether these patients are on or off medication, for the purposes of the experiment they looked like healthy people or people who were off DBS.

But what Frank found was that medications prevent people from learning from negative outcomes of their choices. That could be one explanation for why some patients develop gambling habits. If you learn from the positive outcomes instead of the negative, it could cause you to become a gambler.

"Whereas the DBS had no effect on positive versus negative learning, it had an effect on your ability to 'hold your horses,' so it was a dissociation between two treatments which we think reveal different mechanisms of the circuit of the brain that we're interested in,” Frank said.

Frank said the results of his experiments are a test of a basic science mechanism for how the brain makes adaptive decisions. The same basal ganglia is involved in other disorders. People who are addicts, for example, are more likely to make impulsive choices, and DBS and medication used to treat Parkinson's have been shown to cause pathological gambling to some degree.

"We may be able to use this to understand a more basic sciences perspective. Maybe the same circuits are involved in gamblers who don't have Parkinson's," Frank said.

He also hinted that the study might offer clues to consumer behavior.

"I think that you can have the opposite effect, where the hold-your-horses signal is too strong in responding to decision conflict. One thing that has been shown in healthy people who have been presented with too many options is a kind of 'decision paralysis,'" he said.

For example, if shoppers are exposed to two dozen varieties of essentially the same product, research shows very few will actually make a purchase. Employees faced with too many options for 401k plans are less likely to invest in any of them, even though their employer is going to match their contributions.

Frank also is interested in whether impulsive decision making can be prevented in DBS patients. One long-range goal, he said, is to be able to test the STN during the implant surgery, avoiding the decision-making areas and targeting only the brain's motor function.

“We hope that in the operating room we can determine selective parts of the brain that respond to this conflict-based decision making and use that to avoid stimulating that area, and have it be selective to just the pure motor function,” he said.

Frank's collaborators include Johan Samanta of the UA neurology department and Banner Good Samaritan Medical Center in Phoenix; Ahmed A. Mousafa of the UA psychology department; and Scott J. Sehrman of the UA neurology department.

CONTACT: Michael Frank (520-626-4787; mfrank@u.arizona.edu)

Johnny Cruz | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>