Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hold Your Horses

26.10.2007
A new study illuminates some of the brain's decision-making process and how a popular treatment for Parkinson's can have unintended consequences.

For those who suffer with the debilitating symptoms of Parkinson's disease, deep brain stimulation offers relief from the tremors and rigidity that can't be controlled by medicine. A particularly troublesome downside, though, is that these patients often exhibit compulsive behaviors that healthy people, and even those taking medication for Parkinson's, can easily manage.

Michael Frank, an assistant professor of psychology and director of the Laboratory for Neural Computation and Cognition at The University of Arizona, and his research colleagues have shed some light on how DBS interferes with the brain's innate ability to deliberate on complicated decisions. Their results are published in the Oct. 26 issue of the journal Science.

DBS implants affect the region of the brain called the subthalamic nucleus, known as STN, which also modulates decision making.

"This particular area of the brain is needed for what's called a 'hold-your-horses' signal," Frank said. "When you're making a difficult choice, with a conflict between two or more options, an adaptive response for your system to do is to say 'Hold on for a second. I need to take a little more time to figure out which is the best option.'"

The STN, he said, detects conflict between two or more choices and reacts by sending a neural signal to temporarily prevent the selection of any response. It's this response that DBS seems to interrupt. DBS acts much like a lesion on the subthalamic nucleus. Frank's hypothesis predicted that DBS would negate the "hold-your-horses" response to high-conflict choices. Surprisingly, it actually sped up the decision-making process – a signature, he said, of impulsive decision making.

The tendency toward impulsive behavior in Parkinson's patients is well-documented but only dimly understood. How is the STN involved in decision making and why should things go awry when you stimulate it?

For those taking them, medications did not slow down decision-making conflict. Regardless of whether these patients are on or off medication, for the purposes of the experiment they looked like healthy people or people who were off DBS.

But what Frank found was that medications prevent people from learning from negative outcomes of their choices. That could be one explanation for why some patients develop gambling habits. If you learn from the positive outcomes instead of the negative, it could cause you to become a gambler.

"Whereas the DBS had no effect on positive versus negative learning, it had an effect on your ability to 'hold your horses,' so it was a dissociation between two treatments which we think reveal different mechanisms of the circuit of the brain that we're interested in,” Frank said.

Frank said the results of his experiments are a test of a basic science mechanism for how the brain makes adaptive decisions. The same basal ganglia is involved in other disorders. People who are addicts, for example, are more likely to make impulsive choices, and DBS and medication used to treat Parkinson's have been shown to cause pathological gambling to some degree.

"We may be able to use this to understand a more basic sciences perspective. Maybe the same circuits are involved in gamblers who don't have Parkinson's," Frank said.

He also hinted that the study might offer clues to consumer behavior.

"I think that you can have the opposite effect, where the hold-your-horses signal is too strong in responding to decision conflict. One thing that has been shown in healthy people who have been presented with too many options is a kind of 'decision paralysis,'" he said.

For example, if shoppers are exposed to two dozen varieties of essentially the same product, research shows very few will actually make a purchase. Employees faced with too many options for 401k plans are less likely to invest in any of them, even though their employer is going to match their contributions.

Frank also is interested in whether impulsive decision making can be prevented in DBS patients. One long-range goal, he said, is to be able to test the STN during the implant surgery, avoiding the decision-making areas and targeting only the brain's motor function.

“We hope that in the operating room we can determine selective parts of the brain that respond to this conflict-based decision making and use that to avoid stimulating that area, and have it be selective to just the pure motor function,” he said.

Frank's collaborators include Johan Samanta of the UA neurology department and Banner Good Samaritan Medical Center in Phoenix; Ahmed A. Mousafa of the UA psychology department; and Scott J. Sehrman of the UA neurology department.

CONTACT: Michael Frank (520-626-4787; mfrank@u.arizona.edu)

Johnny Cruz | The University of Arizona
Further information:
http://www.arizona.edu

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>