Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Stress: Brain yields clues about why some succumb while others prevail

22.10.2007
Discovery of resistance mechanisms in mouse brain may lead to help for stress-related mental illness in humans

Results of a new study may one day help scientists learn how to enhance a naturally occurring mechanism in the brain that promotes resilience to psychological stress. Researchers funded by the National Institutes of Health’s National Institute of Mental Health (NIMH) found that, in a mouse model, the ability to adapt to stress is driven by a distinctly different molecular mechanism than is the tendency to be overwhelmed by stress. The researchers mapped out the mechanisms – components of which also are present in the human brain – that govern both kinds of responses.

In humans, stress can play a major role in the development of several mental illnesses, including post-traumatic stress disorder and depression. A key question in mental health research is: Why are some people resilient to stress, while others are not" This research indicates that resistance is not simply a passive absence of vulnerability mechanisms, as was previously thought; it is a biologically active process that results in specific adaptations in the brain’s response to stress.

Results of the study were published online in Cell, on October 18, by Vaishnav Krishnan, Ming-Hu Han, PhD, Eric J. Nestler, MD, PhD, and colleagues from the University of Texas Southwestern Medical Center, Harvard University, and Cornell University.

Vulnerability was measured through behaviors such as social withdrawal after stress was induced in mice by putting them in cages with bigger, more aggressive mice. Even a month after the encounter, some mice were still avoiding social interactions with other mice – an indication that stress had overwhelmed them – but most adapted and continued to interact, giving researchers the opportunity to examine the biological underpinnings of the protective adaptations.

“We now know that the mammalian brain can launch molecular machinery that promotes resilience to stress, and we know what several major components are. This is an excellent indicator that there are similar mechanisms in the human brain,” said NIMH Director Thomas R. Insel, MD.

Looking at a specific part of the brain, the researchers found differences in the rate of impulse-firing by cells that make the chemical messenger dopamine. Vulnerable mice had excessive rates of impulse-firing during stressful situations. But adaptive mice maintained normal rates of firing because of a protective mechanism – a boost in activity of channels that allow the mineral potassium to flow into the cells, dampening their firing rates.

Higher rates of impulse-firing in the vulnerable mice led to more activity of a protein called BDNF, which had been linked to vulnerability in previous studies by the same researchers. With their comparatively lower rates of impulse-firing, the resistant mice did not have this increase in BDNF activity, another factor that contributed to resistance.

The scientists found that these mechanisms occurred in the reward area of the brain, which promotes repetition of acts that ensure survival. The areas involved were the VTA (ventral tegmental area) and the NAc (nucleus accumbens).

In a series of experiments, the scientists extended their findings to provide a progressively larger picture of the vulnerability and resistance mechanisms. They used a variety of approaches to test the findings, strengthening their validity.

“The extensiveness and thoroughness of their research enabled these investigators to make a very strong case for their hypothesis,” Insel said.

For example, the researchers showed that the excess BDNF protein in vulnerable mice originated in the VTA, rather than in the NAc. Chemical signals the protein sent from the VTA to the NAc played an essential role in making the mice vulnerable. Blocking the signals with experimental compounds turned vulnerable mice into resistant mice.

The scientists also conducted a genetic experiment which showed that, in resistant mice, many more genes in the VTA than in the NAc went into action in stressful situations, compared with vulnerable mice. Gene activity governs a host of biochemical events in the brain, and the results of this experiment suggest that genes in the VTA of resilient mice are working hard to offset mechanisms that promote vulnerability.

Another component of the study revealed that mice with a naturally occurring variation in part of the gene that produces the BDNF protein are resistant to stress. The variation results in lower production of BDNF, consistent with the finding that low BDNF activity promotes resilience.

The scientists also examined brain tissue of deceased people with a history of depression, and compared it with brain tissue of mice that showed vulnerability to stress. In both cases, the researchers found higher-than-average BDNF protein in the brain’s reward areas, offering a potential biological explanation of the link between stress and depression.

“The fact that we could increase these animals’ ability to adapt to stress by blocking BDNF and its signals means that it may be possible to develop compounds that improve resilience. This is a great opportunity to explore potential ways of increasing stress-resistance in people faced with situations that might otherwise result in post-traumatic stress disorder, for example,” said Nestler.

“But it doesn’t happen in a vacuum. Blocking BDNF at certain stages in the process could perturb other systems in negative ways. The key is to identify safe ways of enhancing this protective resilience machinery,” Nestler added.

Susan Cahill | EurekAlert!
Further information:
http://www.nih.gov
http://www.nimh.nih.gov/

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>