Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Contributions to Human Brain Morphology and Intelligence

17.10.2007
While showing an impressive growth prenatally, the human brain is not completed at birth. There is considerable brain growth during childhood with dynamic changes taking place in the human brain throughout life, probably for adaptation to our environments.

Evidence is accumulating that brain structure is under considerable genetic influence [Peper et al., 2007]. Puberty, the transitional phase from childhood into adulthood, involves changes in brain morphology that may be essential to optimal adult functioning. Around the onset of puberty gray matter volume starts to decrease, while white matter volume is still increasing [Giedd et al., 1999].

Recent findings have shown, that variation in total gray and white matter volume of the adult human brain is primarily (70–90%) genetically determined [Baare et al, 2001] and in a recent magnetic resonance imaging (MRI) brain study with 45 monozygotic and 61 dizygotic 9-year-old twin-pairs, and their 87 full siblings also high heritabilities have been found [Peper et al, in preparation]. Thus, while environmental influences may play a role in later stages during puberty, around the onset of puberty brain volumes are already highly heritable.

Genetic influences and functional relevance

Twin studies have also shown that genetic effects vary regionally within the brain, with high heritabilities of frontal lobe volumes (90–95%), moderate estimates in the hippocampus (40–69%), and environmental factors influencing several medial brain areas.

However, the mechanisms by which interaction between genes and environment occur throughout life as well as dynamics of brain structure and its association with brain functioning still remain unknown. Twin and family studies and newly evolving genetic approaches start to give us a glimpse as to which genes and (interacting) environmental influences are shaping our brains.

Brain structure – measured macroscopically using MRI – and the dynamic changes therein, have a functional relevance.

Studies revealed that total brain volume is positively correlated with general intelligence. In healthy subjects, the level of intellectual functioning has been positively associated with whole brain, gray, and white matter volumes [Thompson et al, 2001; Posthuma et al, 2002]. More focally, several brain areas were found to be correlated with intelligence. Interestingly, it was also shown that the trajectory changes in cortical thickness throughout adolescence are associated with the level of intelligence.

Furthermore, a common set of genes may also cause the association between brain structure and cognitive functions. However, in elderly twins, the associations between frontotemporal brain volumes and executive function were found to be because of common environmental influences shared by twins from the same family [Carmelli et al., 2002]. These results point to the possibility that overlapping sets of genes or common environmental influences cause variation in two distinct phenotypes. It might be, for example, that a higher level of cognitive functioning leads a person to select an environment that also increases brain size. The genetic influence on brain size then simply reflects the genetic influences on cognition. Thus, the specific mechanism, pathways, and genes that are involved in human brain morphology and its association with cognitive functions remain elusive.

Although genetic effects on morphology of specific gray matter areas in the brain have been studied, the heritability of focal white matter was unknown until recently. Similarly, it was unresolved whether there is a common genetic origin of focal gray matter and white matter structures with intelligence. In our study involving 54 monozygotic and 58 dizygotic twin pairs and their 34 singleton siblings, verbal, and performal intelligence were found to share a common genetic origin with an anatomical neural network involving the frontal, occipital, and parahippocampal gray matter and connecting white matter of the superior occipitofrontal fascicle, and the corpus callosum [Hulshoff Pol et al., 2006]. For the genetic analyses, structural equation modeling and voxel-based morphometry were used. To explore the common genetic origin of focal gray matter and white matter areas with intelligence, cross-trait/cross-twin correlations were obtained in which the focal gray matter and white matter densities of each twin are correlated with the psychometric intelligence quotient of his/her cotwin.

The results of this study indicate that genes significantly influence white matter density of the superior occipitofrontal fascicle, corpus callosum, optic radiation, and corticospinal tract, as well as gray matter density of the medial frontal, superior frontal, superior temporal, occipital, postcentral, posterior cingulate, and parahippocampal cortices. Moreover, the results show that intelligence shares a common genetic origin with superior occipitofrontal, callosal, and left optical radiation white matter and frontal, occipital, and parahippocampal gray matter (phenotypic correlations up to 0.35).

These findings point to a neural network that shares a common genetic origin with human intelligence. Thus, it seems that the individual variation in morphology of areas involved in attention, language, visual, and emotional processing, as well as in sensorimotor processing are strongly genetically influenced.

In addition, unique environmental factors influenced vast gray matter and white matter areas surrounding the lateral ventricles (up to 0.50). This finding coincides with the significant environmental influences on lateral ventricle volume [common (0.58) and unique (0.42) with no significant contributions of genes] that was reported previously in this twin sample [Baaré et al., 2001].

Clinical implications

Considering the high heritabilities for global brain volumes and particular focal brain densities and thicknesses, the search for genes that are involved in brain growth, aging, and brain structure maintenance is important. Such knowledge can help us understand normal developmental and age-associated changes in individual variation in brain functioning. Moreover, it enhances our knowledge of individual variation in brain functioning and facilitates the interpretation of the morphological changes found in psychiatric disorders such as schizophrenia [van Haren et al., 2007]. Also, it allows future efforts to find particular genes responsible for brain structures to be concentrated in areas that are under considerable genetic influence [Hulshoff Pol et al., 2006].

A genetic approach to find genes involved in brain structure that has been applied in several studies is that of diseases with a clear genetic etiology such as Huntington’s disease, Down syndrome, Williams syndrome, and Velocardiofacial syndrome. A review reveals for these diseases besides disease specific brain changes, decreases in total brain, white matter, and hippocampus volumes, irrespective of the genes and/or chromosomes involved. This suggests that many genes are probably involved in the individual variation of these measures [Peper et al., in press].

It is important to investigate which environmental factors have an influence on the expression of genes (as found in DNA-methylation). Additionally, the study of interaction between genes and environmental factors is warranted. Furthermore, the simultaneous effects of multiple genes and possibly the interaction among genes, also needs investigation as the high heritability of a complex quantitative phenotype such as brain volume cannot be explained by a single-gene polymorphism

Conclusion

•MRI studies in twins indicate that, given the basic additive genetic model, overall brain volume in adulthood is highly heritable.

•To test for influences of genetic, common, and unique environmental factors or interactions between genetic and environmental influences. twin studies carried out in large and more homogenous samples, analyzed with advanced quantitative genetic methods are needed.

•To investigate the stability of genetic and environmental influences onto functional neural networks in human brain longitudinal twin studies in childhood as well as in adulthood are needed since brain volume changes dynamically throughout life.

•New brain-imaging methods, such as DTI-fiber tracking and resting state functional MRI, allow to study the heritability of neural networks underlying brain functioning.

•These new methods, in coherence with new genetic approaches, will enable us to further disentangle which genes and environmental factors and interactions therein influence human brain structure throughout life.

Maria Vrijmoed-de Vries | alfa
Further information:
http://www.ecnp.eu

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>