Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study shows genetically engineered corn could affect aquatic ecosystems

10.10.2007
A study by an Indiana University environmental science professor and several colleagues suggests a widely planted variety of genetically engineered corn has the potential to harm aquatic ecosystems. The study is being published online this week by the journal Proceedings of the National Academies of Sciences.

Researchers, including Todd V. Royer, an assistant professor in the IU School of Public and Environmental Affairs, established that pollen and other plant parts containing toxins from genetically engineered Bt corn are washing into streams near cornfields.

They also conducted laboratory trials that found consumption of Bt corn byproducts produced increased mortality and reduced growth in caddisflies, aquatic insects that are related to the pests targeted by the toxin in Bt corn.

Caddisflies, Royer said, "are a food resource for higher organisms like fish and amphibians. And, if our goal is to have healthy, functioning ecosystems, we need to protect all the parts. Water resources are something we depend on greatly."

Other principal investigators for the study, titled "Toxins in transgenic crop byproducts may affect headwater stream ecosystems," were Emma Rosi-Marshall of Loyola University Chicago, Jennifer Tank of the University of Notre Dame and Matt Whiles of Southern Illinois University. It was funded by the National Science Foundation.

Bt corn is engineered to include a gene from the micro-organism Bacillus thuringiensis, which produces a toxin that protects the crop from pests, in particular the European corn borer. It was licensed for use in 1996 and quickly gained popularity. In 2006, around 35 percent of corn acreage planted in the U.S. was genetically modified, the study says, citing U.S. Department of Agriculture data.

Before licensing Bt corn, the U.S. Environmental Protection Agency conducted trials to test its impact on water biota. But it used Daphnia, a crustacean commonly used for toxicity tests, and not insects that are more closely related to the target pests, Royer said.

Royer emphasized that, if there are unintended consequences of planting genetically engineered crops, farmers shouldn't be held responsible. In a competitive agricultural economy, producers have to use the best technologies they can get.

"Every new technology comes with some benefits and some risks," he said. "I think probably the risks associated with widespread planting of Bt corn were not fully assessed."

There was a public flap over the growing use of Bt corn in 1999, when a report indicated it might harm monarch butterflies. But studies coordinated by the government's Agriculture Research Service and published in PNAS concluded there was not a significant threat to monarchs. Around that time, Royer said, he and his colleagues wondered whether the toxin from Bt corn was getting into streams near cornfields; and, if so, whether it could have an impact on aquatic insects.

Their research, conducted in 2005 and 2006 in an intensely farmed region of northern Indiana, measured inputs of Bt corn pollen and corn byproducts (e.g., leaves and cobs) in 12 headwater streams, using litter traps to collect the materials. They also found corn pollen in the guts of certain caddisflies, showing they were feeding on corn pollen.

In laboratory trials, the researchers found caddisflies that were fed leaves from Bt corn had growth rates that were less than half those of caddisflies fed non-Bt corn litter. They also found that a different type of caddisfly had significantly increased mortality rates when exposed to Bt corn pollen at concentrations between two and three times the maximum found in the test sites.

Royer said there was considerable variation in the amount of corn pollen and byproducts found at study locations. And there is likely also to be significant geographical variation; farmers in Iowa and Illinois, for example, are planting more Bt corn than those in Indiana. The level of Bt corn pollen associated with increased mortality in caddisflies, he said, "could potentially represent conditions in streams of the western Corn Belt."

Steve Hinnefeld | EurekAlert!
Further information:
http://www.indiana.edu

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>