Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study shows genetically engineered corn could affect aquatic ecosystems

A study by an Indiana University environmental science professor and several colleagues suggests a widely planted variety of genetically engineered corn has the potential to harm aquatic ecosystems. The study is being published online this week by the journal Proceedings of the National Academies of Sciences.

Researchers, including Todd V. Royer, an assistant professor in the IU School of Public and Environmental Affairs, established that pollen and other plant parts containing toxins from genetically engineered Bt corn are washing into streams near cornfields.

They also conducted laboratory trials that found consumption of Bt corn byproducts produced increased mortality and reduced growth in caddisflies, aquatic insects that are related to the pests targeted by the toxin in Bt corn.

Caddisflies, Royer said, "are a food resource for higher organisms like fish and amphibians. And, if our goal is to have healthy, functioning ecosystems, we need to protect all the parts. Water resources are something we depend on greatly."

Other principal investigators for the study, titled "Toxins in transgenic crop byproducts may affect headwater stream ecosystems," were Emma Rosi-Marshall of Loyola University Chicago, Jennifer Tank of the University of Notre Dame and Matt Whiles of Southern Illinois University. It was funded by the National Science Foundation.

Bt corn is engineered to include a gene from the micro-organism Bacillus thuringiensis, which produces a toxin that protects the crop from pests, in particular the European corn borer. It was licensed for use in 1996 and quickly gained popularity. In 2006, around 35 percent of corn acreage planted in the U.S. was genetically modified, the study says, citing U.S. Department of Agriculture data.

Before licensing Bt corn, the U.S. Environmental Protection Agency conducted trials to test its impact on water biota. But it used Daphnia, a crustacean commonly used for toxicity tests, and not insects that are more closely related to the target pests, Royer said.

Royer emphasized that, if there are unintended consequences of planting genetically engineered crops, farmers shouldn't be held responsible. In a competitive agricultural economy, producers have to use the best technologies they can get.

"Every new technology comes with some benefits and some risks," he said. "I think probably the risks associated with widespread planting of Bt corn were not fully assessed."

There was a public flap over the growing use of Bt corn in 1999, when a report indicated it might harm monarch butterflies. But studies coordinated by the government's Agriculture Research Service and published in PNAS concluded there was not a significant threat to monarchs. Around that time, Royer said, he and his colleagues wondered whether the toxin from Bt corn was getting into streams near cornfields; and, if so, whether it could have an impact on aquatic insects.

Their research, conducted in 2005 and 2006 in an intensely farmed region of northern Indiana, measured inputs of Bt corn pollen and corn byproducts (e.g., leaves and cobs) in 12 headwater streams, using litter traps to collect the materials. They also found corn pollen in the guts of certain caddisflies, showing they were feeding on corn pollen.

In laboratory trials, the researchers found caddisflies that were fed leaves from Bt corn had growth rates that were less than half those of caddisflies fed non-Bt corn litter. They also found that a different type of caddisfly had significantly increased mortality rates when exposed to Bt corn pollen at concentrations between two and three times the maximum found in the test sites.

Royer said there was considerable variation in the amount of corn pollen and byproducts found at study locations. And there is likely also to be significant geographical variation; farmers in Iowa and Illinois, for example, are planting more Bt corn than those in Indiana. The level of Bt corn pollen associated with increased mortality in caddisflies, he said, "could potentially represent conditions in streams of the western Corn Belt."

Steve Hinnefeld | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>