Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Animal study identifies potential treatment for Huntington's disease

09.10.2007
MassGeneral Institute for Neurodegererative Disorders (MIND) researchers have identified a compound that may lead to a treatment that could protect against the effects of Huntington’s Disease (HD).

Their report, which will appear in the Proceedings of the National Academy of Sciences, describes how a small molecule called C2-8 appears to delay the loss of motor control and reduce neurological damage in a mouse model of the disorder. The study is receiving early online release.

“We found that C2-8 slows the progress of HD in a mouse model and might do the same thing in human patients, if it or its biochemical relatives can be translated into a drug,” says Steven Hersch, MD, PhD, of MIND and the Massachusetts General Hospital (MGH) Department of Neurology, who led the study. “What we don’t know yet is precisely how it works, what molecules it interacts with in cells and how potent it might be.”

C2-8 was first identified as a candidate treatment for HD by MIND researcher Aleksey Kazantsev, PhD, based on its ability to block the aggregation of the mutant huntingtin protein in yeast and animal tissue and to improve function in a fruit fly model. The current study was designed to further investigate its potential as a therapeutic drug. The researchers first confirmed that oral doses of C2-8 can cross the blood-brain barrier and are nontoxic in a mouse model of HD. They also found that C2-8 does not interact with a number of molecules predictive of negative side effects.

HD mice that were treated with C2-8 starting at the age of 24 days scored significantly better on tests of strength, endurance and coordination than did HD mice that did not receive the molecule. While treatment significantly delayed progressive motor disability, the animals receiving C2-8 did not live longer. Examination of brain cells from the striatum, the area of the brain where the deterioration of HD occurs, showed that treated mice had less shrinkage of brain cells and smaller aggregates of huntingtin protein than did untreated HD mice.

“We’ve both validated that compounds reducing the aggregation of mutant huntingtin are potential HD drugs – so that strategy is one that other scientists should pursue – and shown that C2-8 has potential as the basis of a neuroprotective treatment,” says Hersch. “We now need to confirm those results in a different mouse model, see whether similar compounds may be more potent than C2-8 and search for the enzyme or receptor it is binding to.” Hersch is an associate professor of Neurology at Harvard Medical School.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>