Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate may increase heat-related deaths by 2050s

01.10.2007
Mailman School of Public Health researchers estimate a 47 percent to 95 percent increase in summer heat-related deaths in New York City region

While some uncertainty does exist in climate projections and future health vulnerability, overall increases in heat-related premature mortality are likely by the 2050s, according to a recent study by Columbia University’s Mailman School of Public Health and soon to be published in the November 2007 issue of the American Journal of Public Health. In metropolitan New York, researchers estimate a 47 percent to 95 percent increase in summer heat-related deaths when compared to the 1990s.

Recent reports strongly suggest that both emissions and warming trends will continue to affect the atmosphere into the 21st century, with annual average temperatures for the region in the 2050s projected to rise by 2.5 degrees Fahrenheit to 6.5 degrees Fahrenheit, and summer temperature increasing 2.7 degrees Fahrenheit to 7.6 degrees Fahrenheit.

“These new results indicate that climate change will put additional stress on the health of New York residents in the absence of concerted efforts to reduce vulnerability to heat waves,” says Patrick Kinney ScD, associate professor of Environmental Health Sciences at the Mailman School of Public Health, who designed and directed the study. The research findings also indicate that urban counties will experience greater numbers of deaths than less-urbanized counties. Currently, counties experiencing the hottest summers are the highly urbanized counties in and around New York City, which also have the greatest population density. Millions of residents are already exposed to periodic summer heat stress, which can lead to increases in heat-related illness and premature deaths. Cities such as New York may be at particular risk from climate change because the “urban heat island effect” further increases regional temperatures, and some communities in densely populated urban centers are among those most vulnerable to heat.

“The relatively large percentage of households who live in poverty or in older residential neighborhoods in New York City where multifamily rental buildings often do not haveair conditioning may enhance urban population vulnerability to heat stress,” says Kim Knowlton, DrPH, assistant clinical professor of Environmental Health Sciences, science fellow on global warming and health at the Natural Resources Defense Council, and first author. “Although temperatures are projected to warm considerably in the urban core by the 2050s, our global-to-regional model results suggest that the greatest increases in mean daily temperatures relative to the 1990s will occur in the nonurban counties well beyond the city limits of the five boroughs of New York City.”

The diverse urban population of New York includes millions of residents aged 65 years and older or with cardiovascular or respiratory illness, risk factors that increase vulnerability to summer heat stress. With the aging of the baby boomers, the proportion of the U.S. population aged 65 years and older is expected to increase until 2020, placing additional millions among those most vulnerable to heat stress. “Because this study did not factor in the future growth in population that is projected for New York City and which will expose even more New Yorkers to sweltering summer heat, it can be argued that the population constant method provides a conservative projection of possible future climate-related changes in temperature-related mortality,” noted Dr. Knowlton.

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu
http://www.mailman.hs.columbia.edu

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>