Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate may increase heat-related deaths by 2050s

01.10.2007
Mailman School of Public Health researchers estimate a 47 percent to 95 percent increase in summer heat-related deaths in New York City region

While some uncertainty does exist in climate projections and future health vulnerability, overall increases in heat-related premature mortality are likely by the 2050s, according to a recent study by Columbia University’s Mailman School of Public Health and soon to be published in the November 2007 issue of the American Journal of Public Health. In metropolitan New York, researchers estimate a 47 percent to 95 percent increase in summer heat-related deaths when compared to the 1990s.

Recent reports strongly suggest that both emissions and warming trends will continue to affect the atmosphere into the 21st century, with annual average temperatures for the region in the 2050s projected to rise by 2.5 degrees Fahrenheit to 6.5 degrees Fahrenheit, and summer temperature increasing 2.7 degrees Fahrenheit to 7.6 degrees Fahrenheit.

“These new results indicate that climate change will put additional stress on the health of New York residents in the absence of concerted efforts to reduce vulnerability to heat waves,” says Patrick Kinney ScD, associate professor of Environmental Health Sciences at the Mailman School of Public Health, who designed and directed the study. The research findings also indicate that urban counties will experience greater numbers of deaths than less-urbanized counties. Currently, counties experiencing the hottest summers are the highly urbanized counties in and around New York City, which also have the greatest population density. Millions of residents are already exposed to periodic summer heat stress, which can lead to increases in heat-related illness and premature deaths. Cities such as New York may be at particular risk from climate change because the “urban heat island effect” further increases regional temperatures, and some communities in densely populated urban centers are among those most vulnerable to heat.

“The relatively large percentage of households who live in poverty or in older residential neighborhoods in New York City where multifamily rental buildings often do not haveair conditioning may enhance urban population vulnerability to heat stress,” says Kim Knowlton, DrPH, assistant clinical professor of Environmental Health Sciences, science fellow on global warming and health at the Natural Resources Defense Council, and first author. “Although temperatures are projected to warm considerably in the urban core by the 2050s, our global-to-regional model results suggest that the greatest increases in mean daily temperatures relative to the 1990s will occur in the nonurban counties well beyond the city limits of the five boroughs of New York City.”

The diverse urban population of New York includes millions of residents aged 65 years and older or with cardiovascular or respiratory illness, risk factors that increase vulnerability to summer heat stress. With the aging of the baby boomers, the proportion of the U.S. population aged 65 years and older is expected to increase until 2020, placing additional millions among those most vulnerable to heat stress. “Because this study did not factor in the future growth in population that is projected for New York City and which will expose even more New Yorkers to sweltering summer heat, it can be argued that the population constant method provides a conservative projection of possible future climate-related changes in temperature-related mortality,” noted Dr. Knowlton.

Stephanie Berger | EurekAlert!
Further information:
http://www.columbia.edu
http://www.mailman.hs.columbia.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>