Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tough Enough for Mars, but Deinococcus is from Earth

26.09.2007
Results of a recent study titled “Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks,” will be published in the Sept. 26 edition of PLoS ONE.

The study headed by Michael J. Daly, Ph.D., associate professor at the Uniformed Services University of the Health Sciences’ (USU), Department of Pathology, reports the whole-genome sequence of Deinococcus geothermalis, which is only the second for an extremely radiation- and desiccation-resistant bacterium. The first was for the Guinness World Records-holder Deinococcus radiodurans, which for 50 years has been the subject of extensive investigations aimed at solving the mystery of how this microbe and its close relatives survive immense doses of x-rays and gamma-rays.

Most surprisingly, many of the unique D. radiodurans genes that were strongly implicated in resistance over the last decade have turned out to be unrelated to its survival, and are not present in D. geothermalis. Using computer-based systems to compare the D. geothermalis genome sequence with the sequence of D. radiodurans, a minimal set of genes which encode extreme resistance was defined. Far fewer genes than initially believed appear to be responsible for the extreme resistance trait, which bodes well for the long-term prospects of conferring radiation resistance to other organisms. The phenomenal resistance of Deinococcus bacteria has given rise to numerous descriptions of their origin, including that they evolved on Mars under harsh cosmic radiation. The present analysis firmly places the origin of Deinococcus bacteria on Earth, where the evolutionary steps that led to their survival mechanisms clearly occurred in their terrestrial ancestors - most likely in a desert near you.

The complete manuscript can be read in PLoS ONE at: http://www.plosone.org. PLoS ONE is an open-access, peer-reviewed journal which reports primary research from all disciplines within science and medicine. By not excluding papers on the basis of subject area, PLoS ONE facilitates the discovery of the connections between papers whether within or between disciplines.

Deinococcus geothermalis was chosen for whole-genome sequencing by the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research with Dr. Daly as the Principal Investigator. The genome sequence was acquired at the DOE-Joint Genome Institute (JGI), Walnut Creek, CA, and subjected to comparative analysis at the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, Md. D. geothermalis was previously engineered by Daly’s group for cleanup of radioactive waste sites. The three-year project was a collaboration between USU, DOE-JGI, NIH, DOE’s Advanced Photon Source and Pacific Northwest National Laboratory, and the Russian Academy of Sciences.

USU is located on the grounds of the National Naval Medical Center in Bethesda, Md. The university provides military and public health-relevant education, research, service and consultation to the nation and the world, pursuing excellence and innovation during times of peace and war.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000955

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>