Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tough Enough for Mars, but Deinococcus is from Earth

26.09.2007
Results of a recent study titled “Deinococcus geothermalis: The Pool of Extreme Radiation Resistance Genes Shrinks,” will be published in the Sept. 26 edition of PLoS ONE.

The study headed by Michael J. Daly, Ph.D., associate professor at the Uniformed Services University of the Health Sciences’ (USU), Department of Pathology, reports the whole-genome sequence of Deinococcus geothermalis, which is only the second for an extremely radiation- and desiccation-resistant bacterium. The first was for the Guinness World Records-holder Deinococcus radiodurans, which for 50 years has been the subject of extensive investigations aimed at solving the mystery of how this microbe and its close relatives survive immense doses of x-rays and gamma-rays.

Most surprisingly, many of the unique D. radiodurans genes that were strongly implicated in resistance over the last decade have turned out to be unrelated to its survival, and are not present in D. geothermalis. Using computer-based systems to compare the D. geothermalis genome sequence with the sequence of D. radiodurans, a minimal set of genes which encode extreme resistance was defined. Far fewer genes than initially believed appear to be responsible for the extreme resistance trait, which bodes well for the long-term prospects of conferring radiation resistance to other organisms. The phenomenal resistance of Deinococcus bacteria has given rise to numerous descriptions of their origin, including that they evolved on Mars under harsh cosmic radiation. The present analysis firmly places the origin of Deinococcus bacteria on Earth, where the evolutionary steps that led to their survival mechanisms clearly occurred in their terrestrial ancestors - most likely in a desert near you.

The complete manuscript can be read in PLoS ONE at: http://www.plosone.org. PLoS ONE is an open-access, peer-reviewed journal which reports primary research from all disciplines within science and medicine. By not excluding papers on the basis of subject area, PLoS ONE facilitates the discovery of the connections between papers whether within or between disciplines.

Deinococcus geothermalis was chosen for whole-genome sequencing by the U. S. Department of Energy (DOE), Office of Science, Office of Biological and Environmental Research with Dr. Daly as the Principal Investigator. The genome sequence was acquired at the DOE-Joint Genome Institute (JGI), Walnut Creek, CA, and subjected to comparative analysis at the National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health (NIH), Bethesda, Md. D. geothermalis was previously engineered by Daly’s group for cleanup of radioactive waste sites. The three-year project was a collaboration between USU, DOE-JGI, NIH, DOE’s Advanced Photon Source and Pacific Northwest National Laboratory, and the Russian Academy of Sciences.

USU is located on the grounds of the National Naval Medical Center in Bethesda, Md. The university provides military and public health-relevant education, research, service and consultation to the nation and the world, pursuing excellence and innovation during times of peace and war.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000955

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>