Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do migratory birds “see” the magnetic field?

26.09.2007
A visual pathway links brain structures active during magnetic compass orientation in migratory birds

Every year millions of migratory birds fly towards their wintering quarters and come back in next year´s spring to breed. Behavioral experiments have shown that the Earth´s magnetic field is the main orientation cue on their journeys.

Nevertheless, surprisingly little is known about the neuronal substrates underlying these navigational abilities. In recent years, it has been suggested that sensing of the magnetic reference direction involves vision and that molecules reacting to the Earth´s magnetic field in the birds' eye form the molecular basis for a vision-dependent compass mechanism.

Cryptochromes, which fulfill the molecular requirements for sensing the magnetic reference direction, have recently been found in retinal neurons of migratory birds (Mouritsen et al., PNAS, 2004). Furthermore, studies investigating what parts of a migratory bird´s brain are active when the birds use their magnetic compass showed that the cryptochrome-containing neurons in the eye and a forebrain region (“Cluster N”; Mouritsen et al., PNAS, 2005; Liedvogel et al., EJN, 2007) are highly active during processing of magnetic compass information in migratory birds.

Sensory systems process their particular stimuli along specific brain circuits. Thus, the identification of what sensory system is active during magnetic compass orientation, provides a way to recognize the sensory quality utilized during that specific behavior.

In the current study the research group from Oldenburg, Germany and their collaborators traced the neurons from the eye and from Cluster N. The results “link” the recent findings by demonstrating a functional neuronal connection between the retinal neurons and Cluster N via the visual thalamus.

Thus, the only two parts of the central nervous system shown to be highly active during magnetic compass orientation are linked to each other by a well-known visual brain circuit, namely by parts of the so-called thalamofugal pathway. For the first time, clear neuroanatomical data suggest which specific brain pathway processes magnetic compass information in migratory birds. These findings strongly support the hypothesis that migratory birds use their visual system to perceive the reference compass direction of the geomagnetic field and that migratory birds are thus likely to "see" the geomagnetic field.

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://www.plosone.org/doi/pone.0000937

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>