Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study looks at mitochondrial variation in sperm traits and sperm competitive ability

21.09.2007
Study considered an important link in the field of sexual selection, where maternal inheritance of mitochondria may well have its greatest impact on sperm traits and competitive ability but thus far has been largely overlooked

University of Nevada, Reno researchers Jeanne and David Zeh of the Department of Biology have received a five-year, $650,000 grant from the National Science Foundation to investigate the effects of natural mitochondrial variation on sperm traits and sperm competitive ability.

Researchers have found mitochondrial mutations to be one of the primary causes of low sperm count and poor sperm mobility in humans. However, in the field of sexual selection, where maternal inheritance of mitochondria may well have its greatest impact, female-limited response to selection has been largely overlooked.

The Zehs’ study promises to fill in some of this knowledge gap in evaluating the importance of maternal inheritance of mitochondria for sexual selection and male adaptation. Mitochondria are the principal energy source of a cell, and convert nutrients into energy as well as performing many other specialized tasks.

The Zehs’ study, which will use a neotropical pseudooscorpion Cordylochernes scorpioides as a model system, will encompass whole-genome mitochondrial sequencing, a comprehensive analysis of the physiological and morphological characteristics of sperm that are likely to be important in competitive ability, a large-scale sperm competition experiment designed to identify the target of selection acting on sperm traits, and a replicated, multi-generation experiment in which the evolutionary response to selection on the trait most important in sperm competition will be assessed using both maternally- and paternally-based selection regimes.

Jeanne Zeh, an assistant professor of biology, and David Zeh, an associate professor of biology, both believe that their study will help refine the efforts to understand mitochondrial effects on male fertility.

“The fundamental insight that strict maternal inheritance of mitochondria constrains the ability of males to respond adaptively to selection has led to major advances in the study of human male infertility,” said Jeanne Zeh, the principal investigator for the study, noting that other studies have also investigated this phenomenon in laboratory mice and domestic fowl. “However, these studies have not assessed the effects of natural mitochondrial DNA variation on male fertility and sperm competitive ability.

“Clearly, more research is needed, particularly on natural populations not subject to the potentially strong effects of genetic drift associated with domestication.”

In addition to their research, the Zehs’ study also includes an interesting outreach component. They plan on working with a local AP biology teacher who will serve as a graduate research assistant on the project, and they will hold a series of workshops and seminars for other local high school science teachers and students that will promote the importance for society of basic research in ecology and evolution.

John Trent | EurekAlert!
Further information:
http://www.unr.edu

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>