Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are some groups of animals so diverse?

21.09.2007
Cornell researchers take a look at Australia's most diverse vertebrates: skinks

A new study of finger-sized Australian lizards sheds light on one of the most striking yet largely unexplained patterns in nature: why is it that some groups of animals have evolved into hundreds, even thousands of species, while other groups include only a few?

The study takes a look at Australia’s most diverse group of vertebrates—more than 252 species of lizards called skinks. Researchers at the Cornell Lab of Ornithology have found evidence that the “drying up” of Australia over the past 20 million years triggered this explosive diversification. The results were published in the September 19 online edition of the Proceedings of the Royal Society B.

Lead author Dan Rabosky, a Cornell graduate student, spent many months in the remote Australian outback, trapping skinks as they skittered from one prickly clump of grass to another. By documenting where the various skink species occur and using their DNA to define their evolutionary tree, he found that the groups with the most species are the ones that live in the driest parts of Australia. “There’s something about colonizing the desert that caused these skinks to diversify at an incredibly high rate,” says Rabosky.

An unusual finding of this study is that these skinks upend the usual pattern of species diversity found in other parts of the world. “We typically think of lush tropical rainforests as being the world’s major centers of diversity,” says coauthor Irby Lovette, director of the Cornell Lab of Ornithology’s Fuller Evolutionary Biology Program. “With the skinks, just the opposite has happened: the rainforest skinks in Australia have much lower diversity, and a lot of the evolutionary ‘action’ in this system is taking place in the deserts.”

Over the last 20 million years, most of Australia changed from humid and tropical to bone-dry desert. “Living in the desert is stressful for animals that are adapted for wetter habitats,” says Rabosky. “But somewhere in the distant past, a few skinks developed the ability to survive in their increasingly arid world.” It is the descendents of these few early desert colonists that evolved into amazingly large numbers of skink species.

“Australian skinks are really fascinating,” Rabosky says. “Two groups in particular have gone evolutionarily crazy, each splitting into as many as 100 different species. In contrast to skinks on other continents, and even some other groups in Australia, the diversity of these particular groups has really exploded.”

Rabosky’s study included skinks with spots, skinks with stripes, skinks with four legs, or two—or none. Rabosky says there are at least 252 species of these lizards living Down Under, and probably many more that remain to be discovered.

The evolution of these skinks mirrors that of many groups of organisms—from grasses, to beetles, to humans and our relatives—in which some groups have spectacular diversity and others a paucity of species. “For me as a scientist,” says Rabosky, “one of the great things about skinks is that there are just so darn many species, making the patterns in their diversity really clear.”

Miyoko Chu | EurekAlert!
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>