Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BioMed Central Publishes Framingham Heart Study 100K Result

20.09.2007
BioMed Central, the world's largest publisher of peer-reviewed, open access journals, is pleased to announce that today, 17 research articles carried out using genetic data from the Framingham Heart Study (FHS), are being published as a supplement to BMC Medical Genetics.

The collected research, FHS 100K, is the result of cooperation among several research institutions including Boston University School of Medicine and Public Health; the National Heart, Lung and Blood Institute (NHLBI); the National Library of Medicine; and the National Center for Biotechnology Information (NCBI).

FHS 100K will be given unprecedented availability via BioMed Central's open access journal and through NCBI's Database of Genotypes and Phenotypes (dbGaP) http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?id=phs000007. The researchers' decision to publish in BioMed Central's open access journal underlines their collective belief that genetic observations from FHS should be made publicly available and remain an unpatented data resource designed to accelerate scientific discovery.

"BMC Medical Genetics is honored to be the journal which presents these exciting new results to the world," said Melissa Norton, Editor-in-Chief of BMC Medical Genetics. "Inclusion in both our open access journal and in dbGaP will ensure the widest possible access to these materials and will allow researchers to more easily identify high priority findings for replication to build upon the new findings."

The FHS 100K takes its title from the high resolution 100K Affymetrix GeneChip, designed to contain the genetic sequence array of up 100,000 DNA sequences known as single-nucleotide polymorphisms (SNPs). FHS collaborators studied genetic traits, known as phenotypes, and established 8 larger Phenotype Working Groups, overseeing 17 different trait areas including cardiovascular risk factors and biomarkers; subclinical and clinical cardiovascular disease; cancer and longevity; and pulmonary, sleep, neurology, renal and bone domains. Each research article published in the supplement corresponds with one of these areas.

No other study in history has analyzed as many different phenotypic domains as FHS 100K. In addition, many phenotype samples collected through FHS were gathered years before modern therapy and remain undistorted by the effects of contemporary medical treatments, offering pristine samples unattainable in contemporary subjects.

"The Framingham Heart Study 100K effort was made possible by the generosity of our participants who have received examinations and surveillance for almost 60 years," said Dr. Emelia Benjamin, Professor of Medicine at Boston University School of Medicine (BUSM), and Director of the Echocardiography and Vascular Function laboratories at the Framingham Heart Study

Karen Antman, MD, dean of BUSM and provost of Boston University Medical Campus, added, "The Framingham Heart Study dataset is another example of the groundbreaking collaboration of researchers from Boston University Schools of Medicine and Public Health and from the NHLBI. Our researchers make extraordinary contributions that continuously improve the well-being of people all over the world."

Launched in 1948 by National Heart Institute (now NHLBI), the objective of the Framingham Heart Study is to identify the common factors or characteristics that contribute to cardiovascular disease (CVD) by following its development over a long period of time in a large group of participants who had not yet developed overt symptoms of CVD or suffered a heart attack or stroke. The original researchers recruited 5,209 men and women between the ages of 30 and 62 from the town of Framingham, Massachusetts. Those participants have been followed for nearly 60 years and FHS now includes second and third generation participants.

The data from all of the studies will be made available through NHLBI's dbGaP, a database designed to archive and distribute data from genome wide association studies. Researchers around the world will be able to use the results in the database to conduct further research to create new drugs and treatments to benefit patients. In addition, the results from FHS 100K will automatically be transferred from dbGaP into the SNP Health Association Resource (SHARe) project website, a similar database from NHLBI designed for much larger-scale, whole-genome association study. The SHARe project will analyze 550K SNPs in more than 9,000 samples collected by the NHLBI and Boston University School of Medicine for the Framingham Heart Study.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>