Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study financed by the BBVA Foundation proposes a new universal rule to explain the equilibrium of plant populations

19.09.2007
A study financed by the BBVA Foundation and conducted by scientists Carlos Duarte, Nuria Agustì and Nuria Marbà from the Mediterranean Institute for Advanced Studies (CSIC – University of the Balearic Islands) has allowed the first-time formulation of a universal rule that explains the equilibrium of plant communities, showing how plants assure the survival of their species whether their lives last a day or are prolonged over centuries.

The research project, whose results will appear in the next issue of the U.S. journal Proceedings of the National Academy of Science, also concludes that the life span of these organisms may be sensitive to rises in temperature. According to the authors’ predictions, the mortality of plants could increase by 40% if land temperatures rise by up to 4ºC (the rate of increase projected for the 21st century by climate change prediction models).

The reasons why organisms cease functioning and die is still one of the big questions for science. Some trees live for centuries while the smallest herbs last no more than a few months. However, there is no real reason why herbs should not, in theory, live as long as trees, given that all photosynthetic organisms – plants – can live indefinitely in the absence of disturbances.

The authors of the BBVA Foundation study examined the mortality and population growth rates of 700 phototrophs, ranging from the very smallest – the cells of the marine photosynthetic cyanobacteria Prochloroccocus (just half a micrometer across yet responsible for a considerable fraction of marine photosynthesis) – up to the largest species of trees, in search of general rules conducive to an improved understanding of plant life span regulation.

The results of the study identify phytoplankton as the shortest lived beings, with a span of around one day, while some trees reach ages of a thousand years. This was possible thanks to a methodology developed by Susana Agustí, using techniques that have permitted the first ever quantification of the cell death of phytoplankton.

The authors show that the same basic rules govern the longevity and birth rates of plants, such that the brief life span of the microscopic phytoplankton cells is offset by the vertiginous birth rates of populations, while centennial tree populations register no more than sporadic births.

Their findings provide the key to a universal regulation of the life span of photosynthetic organisms with reference to plant size and the temperatures they grow at, and suggest that the mortality rates of phototrophs evolve to match population growth rates. A further conclusion is that plant mortality is of necessity highly temperature-sensitive, such that climate change will tend to accelerate the phototroph death rates which are an essential part of the food chain. As stated, the authors estimate that plant mortality could increase by 40% in the event of an up to 4ºC increase in land temperatures (the rate foreseen for the 21st century by most climate change prediction models).

The balance between longevity and birth rates in photosynthetic organisms is what keeps their populations stable. In the event of a serious mismatch between plant mortality and birth rates, these populations would either be driven to extinction (if death rates far exceeded births) or would outgrow available resources of light, water and food with the same inevitable result (in the case of births far exceeding deaths).

Javier Fernández | alfa
Further information:
http://www.fbbva.es

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>