Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish to shed light on human mitochondrial diseases

17.09.2007
University of Oregon discovery to benefit studies on COX deficiencies

Zebrafish can now be used to study COX deficiencies in humans, a discovery that gives scientists an unprecedented window to view the earliest stages of mitochondrial impairments that lead to potentially fatal metabolic disorders, according to researchers at the University of Oregon.

COX deficiencies refer to a breakdown of cytochrome coxidase, an enzyme located in the mitochondrion of every cell. Mitochondria are crucial cellular workhorses that provide chemical energy. Research of the deficiency has been stymied by a lack of model organisms, with mice being introduced as the first model by Japanese researchers just seven years ago.

COX involves multiple proteins and assembly factors, and deficiencies of any one of them can negatively affect metabolic tissues, including the brain, muscle and eyes. Deficiencies during the prenatal period are considered to be a potential cause of miscarriages and have been led to prenatal screenings, but scientists still don't understand the metabolic requirements of tissues and organs during early development.

The case for zebrafish (Danio rerio) as an alternative research model is described in a paper posted online ahead of regular publication by the Journal of Biological Chemistry. The comprehensive UO study, led by doctoral student Katrina N. Baden, could speed research and point to specific targets to test potential drug therapies, said co-author Karen Guillemin, a professor of molecular biology and member of the UO Institute of Molecular Biology.

"Mitochondrial impairments are emerging as important in many human diseases, but there have been few models for understanding exactly what is happening during the early development of the diseases," Guillemin said. "The use of mice is limited, because knocking out protein expression in mice mitochondria to mimic human-disease states results in large numbers of deaths in utero. Therefore, the symptoms that researchers have wanted to study have not been assessable in mice."

Baden, a veterinarian, performed several experiments, using RNA-blocking reagents known as morpholinos to reduce gene expression of both a critical COX subunit and Surf1, an assembly-factor protein that when mutated can lead to Leigh syndrome, a severe neurological disorder. She targeted a variety of proteins, alone and in combination, and then added back components to rescue each deficiency. Normal COX activity declined as much as 50 percent in the experimental conditions and resulted in developmental defects in endodermal tissue, cardiac function and swimming behavior in the zebrafish.

"The unique characteristics of zebrafish make them an ideal model for studying the effects of mitochondrial deficiencies on early development," said Baden, who earned her doctorate in July and is now the veterinarian at the UO-based Zebrafish International Resource Center. "Because they develop outside of a uterus and are transparent in early stages, I was able to visualize the effects that molecular alterations have on cell biology, nervous system development, cardiac function and fish behavior."

The external and transparent embryo, Guillemin said, will allow scientists to create specific deficits that mirror those in humans. "The transparency of the embryo will let us see primary defects, what happens in the earliest stages, rather than having to settle for seeing secondary downstream defects later in the disease state," she said.

"Different tissues respond differently to specific losses in mitochondria."

Baden and Guillemin said that the use of zebrafish will improve scientific understanding of the mechanisms of mitochondrial associated pathology in people and speed the identification of new treatments for mitochondrial diseases.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Physics of bubbles could explain language patterns
25.07.2017 | University of Portsmouth

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>