Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish to shed light on human mitochondrial diseases

17.09.2007
University of Oregon discovery to benefit studies on COX deficiencies

Zebrafish can now be used to study COX deficiencies in humans, a discovery that gives scientists an unprecedented window to view the earliest stages of mitochondrial impairments that lead to potentially fatal metabolic disorders, according to researchers at the University of Oregon.

COX deficiencies refer to a breakdown of cytochrome coxidase, an enzyme located in the mitochondrion of every cell. Mitochondria are crucial cellular workhorses that provide chemical energy. Research of the deficiency has been stymied by a lack of model organisms, with mice being introduced as the first model by Japanese researchers just seven years ago.

COX involves multiple proteins and assembly factors, and deficiencies of any one of them can negatively affect metabolic tissues, including the brain, muscle and eyes. Deficiencies during the prenatal period are considered to be a potential cause of miscarriages and have been led to prenatal screenings, but scientists still don't understand the metabolic requirements of tissues and organs during early development.

The case for zebrafish (Danio rerio) as an alternative research model is described in a paper posted online ahead of regular publication by the Journal of Biological Chemistry. The comprehensive UO study, led by doctoral student Katrina N. Baden, could speed research and point to specific targets to test potential drug therapies, said co-author Karen Guillemin, a professor of molecular biology and member of the UO Institute of Molecular Biology.

"Mitochondrial impairments are emerging as important in many human diseases, but there have been few models for understanding exactly what is happening during the early development of the diseases," Guillemin said. "The use of mice is limited, because knocking out protein expression in mice mitochondria to mimic human-disease states results in large numbers of deaths in utero. Therefore, the symptoms that researchers have wanted to study have not been assessable in mice."

Baden, a veterinarian, performed several experiments, using RNA-blocking reagents known as morpholinos to reduce gene expression of both a critical COX subunit and Surf1, an assembly-factor protein that when mutated can lead to Leigh syndrome, a severe neurological disorder. She targeted a variety of proteins, alone and in combination, and then added back components to rescue each deficiency. Normal COX activity declined as much as 50 percent in the experimental conditions and resulted in developmental defects in endodermal tissue, cardiac function and swimming behavior in the zebrafish.

"The unique characteristics of zebrafish make them an ideal model for studying the effects of mitochondrial deficiencies on early development," said Baden, who earned her doctorate in July and is now the veterinarian at the UO-based Zebrafish International Resource Center. "Because they develop outside of a uterus and are transparent in early stages, I was able to visualize the effects that molecular alterations have on cell biology, nervous system development, cardiac function and fish behavior."

The external and transparent embryo, Guillemin said, will allow scientists to create specific deficits that mirror those in humans. "The transparency of the embryo will let us see primary defects, what happens in the earliest stages, rather than having to settle for seeing secondary downstream defects later in the disease state," she said.

"Different tissues respond differently to specific losses in mitochondria."

Baden and Guillemin said that the use of zebrafish will improve scientific understanding of the mechanisms of mitochondrial associated pathology in people and speed the identification of new treatments for mitochondrial diseases.

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>