Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study sheds new light on early star formation in the universe

A groundbreaking study has provided new insight into the way the first stars were formed at the start of the Universe, some 13 billion years ago.

Cosmologists from Durham University, publishing their results in the prestigious international academic journal, Science, suggest that the formation of the first stars depends crucially on the nature of ‘dark matter’, the strange material that makes up most of the mass in the universe.

The discovery takes scientists a step further to determining the nature of dark matter, which remains a mystery since it was first discovered more than 70 years ago. It also suggests that some of the very first stars that ever formed can still be found in the Milky Way galaxy today.

Early structure formation in the Universe involves interaction between elusive particles known as ‘dark matter’. Even though little is known about their nature, evidence for the presence of dark matter is overwhelming, from observations of galaxies, to clusters of galaxies, to the Universe as a whole.

After the Big Bang, the universe was mostly ‘smooth’, with just small ripples in the matter density. These ripples grew larger due to the gravitational forces acting on the dark matter particles contained in them. Eventually, gas was pulled into the forming structures, leading to the formation of the very first stars, about 100 million years after the Big Bang.

For their research, the team from Durham University’s Institute for Computational Cosmology carried out sophisticated computer simulations of the formation of these early stars with accepted scientific models of so-called ‘cold’ as well as ‘warm’ dark matter.

The computer model found that for slow moving ‘cold dark matter’ particles, the first stars formed in isolation, with just a single, larger mass star forming per developing spherical dark matter concentration.

In contrast, for faster-moving ‘warm dark matter’, a large number of stars of differing sizes formed at the same time in a big burst of star formation. The bursts occurred in long and thin filaments.

One of the researchers, Dr Liang Gao, who receives funding from the UK’s Science and Technologies Facilities Council, said: “These filaments would have been around 9000 light years long, which is about a quarter of the size of the Milky Way galaxy today. The very luminous star burst would have lit-up the dark universe in spectacular fashion.”

Stars forming in the cold dark matter are massive. The larger a star is, the shorter its life span, so these larger mass stars would not have survived until today. However the warm dark matter model predicts the formation of low mass stars as well as larger ones and the scientists say the low mass stars would survive until today.

The research paves the way for observational studies which could bring scientists closer to finding out more about the nature of dark matter. Co-researcher, Dr Tom Theuns, said: “A key question that astronomers often ask is ‘where are the descendants of the first stars today"’ The answer is that, if the dark matter is warm, some of these primordial stars should be lurking around our galaxy.”

The Durham University scientists also give new insights into the way that black holes could be formed. Most galaxies harbour in their centres monster black holes, some with masses more than a billion times the mass of the sun.

The team hypothesises that collisions between stars in the dense filament in the warm dark matter scenario lead to the formation of the seeds for such black holes.

Dr Theuns added: “Our results raise the exciting prospect of learning about the nature of dark matter from studying the oldest stars. Another tell-tale sign could be the gigantic black holes that live in centres of galaxies like the Milky Way. They could have formed during the collapse of the first filaments in a universe dominated by warm dark matter.”

Claire Whitelaw | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>