Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study financed by the BBVA Foundation proposes a new universal rule to explain the equilibrium of plant

17.09.2007
A study financed by the BBVA Foundation and conducted by scientists Carlos Duarte, Nuria Agustì and Nuria Marbà from the Mediterranean Institute for Advanced Studies (CSIC – University of the Balearic Islands) has allowed the first-time formulation of a universal rule that explains the equilibrium of plant communities, showing how plants assure the survival of their species whether their lives last a day or are prolonged over centuries.

The research project, whose results will appear in the next issue of the U.S. journal Proceedings of the National Academy of Science, also concludes that the life span of these organisms may be sensitive to rises in temperature. According to the authors’ predictions, the mortality of plants could increase by 40% if land temperatures rise by up to 4ºC (the rate of increase projected for the 21st century by climate change prediction models).

The reasons why organisms cease functioning and die is still one of the big questions for science. Some trees live for centuries while the smallest herbs last no more than a few months. However, there is no real reason why herbs should not, in theory, live as long as trees, given that all photosynthetic organisms – plants – can live indefinitely in the absence of disturbances.

The authors of the BBVA Foundation study examined the mortality and population growth rates of 700 phototrophs, ranging from the very smallest – the cells of the marine photosynthetic cyanobacteria Prochloroccocus (just half a micrometer across yet responsible for a considerable fraction of marine photosynthesis) – up to the largest species of trees, in search of general rules conducive to an improved understanding of plant life span regulation.

The results of the study identify phytoplankton as the shortest lived beings, with a span of around one day, while some trees reach ages of a thousand years. This was possible thanks to a methodology developed by Susana Agustí, using techniques that have permitted the first ever quantification of the cell death of phytoplankton.

The authors show that the same basic rules govern the longevity and birth rates of plants, such that the brief life span of the microscopic phytoplankton cells is offset by the vertiginous birth rates of populations, while centennial tree populations register no more than sporadic births.

Their findings provide the key to a universal regulation of the life span of photosynthetic organisms with reference to plant size and the temperatures they grow at, and suggest that the mortality rates of phototrophs evolve to match population growth rates. A further conclusion is that plant mortality is of necessity highly temperature-sensitive, such that climate change will tend to accelerate the phototroph death rates which are an essential part of the food chain. As stated, the authors estimate that plant mortality could increase by 40% in the event of an up to 4ºC increase in land temperatures (the rate foreseen for the 21st century by most climate change prediction models).

The balance between longevity and birth rates in photosynthetic organisms is what keeps their populations stable. In the event of a serious mismatch between plant mortality and birth rates, these populations would either be driven to extinction (if death rates far exceeded births) or would outgrow available resources of light, water and food with the same inevitable result (in the case of births far exceeding deaths).

Javier Fernández | alfa
Further information:
http://www.fbbva.es

More articles from Studies and Analyses:

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

nachricht Urbanization to convert 300,000 km2 of prime croplands
27.12.2016 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>