Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Diesel exhaust may increase risk in patients with heart disease

13.09.2007
Air pollution could be putting patients with heart disease at risk by affecting blood vessels and clotting, researchers warn

A study by the University of Edinburgh and Umeå University measured the effects of diesel exhaust on heart and blood vessel function in men who have previously experienced a heart attack.

The research, funded by the British Heart Foundation and published in the New England Journal of Medicine, found that inhalation of diesel exhaust caused changes in the heart’s electrical activity, suggesting that air pollution reduces the amount of oxygen available to the heart during exercise.

Dr Nicholas Mills, of the University’s Centre for Cardiovascular Sciences, said: “This study provides an explanation for why patients with heart disease are more likely to be admitted to hospital on days in which air pollution levels are increased. Most people tend to think of air pollution as having effects on the lungs but, as this study shows, it can also have a major impact on how our heart functions.”

Twenty men who had suffered a previous heart attack were carefully screened to ensure they did not suffer from angina or heart rhythm problems and that their heart condition was stable and appropriately treated. The men were exposed for one hour to either filtered air or dilute diesel exhaust while intermittently riding a stationary bicycle in a carefully monitored exposure chamber in Umeå University. Heart function was monitored continuously and blood tests taken six hours after leaving the chamber.

Electrical monitoring of the heart showed that inhalation of diesel exhaust caused a three-fold increase in the stress of the heart during exercise. In addition, the body’s ability to release a “guardian” protein known as t-PA (tissue plasminogen activator), which can prevent blood clots from forming, was also reduced by more than one third following exposure.

The link between air pollution and heart disease is strongest for the fine exhaust particles produced by road traffic. Researchers are particularly interested in diesel engines because they generate 10-100 times more pollutant particles than petrol engines. The number of diesel-powered automobiles is increasing in Europe and other parts of the world.

“Diesel exhaust consists of a complex mixture of particles and gases. Before we can recommend the widespread use of particle traps in diesel engines, we need to show that particles are the responsible component,” Dr Mills said.

“If we do that, then it is likely that devices to filter particles from exhaust, will reduce exposure and benefit public health.”

Professor Peter Weissberg, Medical Director of the British Heart Foundation (BHF), said: “There is already evidence that air pollution can make existing heart conditions worse. This research is helping us work out why. It shows that in patients with coronary heart disease, diesel exhaust can reduce the amount of oxygen available to the heart during exercise, which may increase the risk of a heart attack.

“Because of the overwhelming benefits of exercise on heart health, we would still encourage heart patients to exercise regularly, but preferably not when there is a lot of local traffic around. Heart patients can look out for pollution levels on their local weather forecasts.”

Tara Womersley | EurekAlert!
Further information:
http://bhf.org.uk
http://www.ed.ac.uk

More articles from Studies and Analyses:

nachricht Win-win strategies for climate and food security
02.10.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>