Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA analysis shows true dispersal of protozoa

13.09.2007
In contrast to previous findings, it seems that the global distribution of macro- and microorganisms might be similar.

A study in the online open access journal, BMC Evolutionary Biology, shows that some protozoa are globally dispersed, while others are geographically restricted - by looking at a new fast-evolving DNA marker. The study also reveals that the biodiversity of protozoa may be much higher than previously realised.

It has long been argued that the small size and huge populations of microorganisms aids their global dispersal. 'Everything is everywhere, but the environment selects' said Lourens Baas-Becking in 1934. Today, this Ubiquitous Dispersal Hypothesis (UDH) remains controversial compared to the alternative possibility of endemicity - the tendency of organisms to be confined to specific regions - as is found for many macro-organisms. While previous morphological and molecular analyses of environmental samples from around the world have provided evidence for UDH, these markers evolve too slowly to allow a really rigorous test of the hypothesis.

David Bass and colleagues at the University of Oxford and elsewhere, have carried out an analysis of the global distribution and diversity of three narrow taxonomic groups of cercomonads (heterotrophic flagellate protozoa) based upon PCR, cloning and sequencing of ITS1 rDNA sequences from samples gathered from around the world. ITS1 is a faster-evolving marker than the more commonly used 18S rDNA and therefore allowed the study to be done at a higher phylogenetic resolution. This approach is robust, being independent of the ability to culture or see the organism being studied.

They sequenced gene libraries of soil, freshwater, and marine cercomonads constructed from 47-80 samples per group from a wide range of habitats in locations including Panama, the Pacific, the Caribbean, Peru, UK, Greece, France, Germany, India, Japan, British Columbia, Australia and New Zealand. The study is unique in screening such large numbers of globally distributed environmental DNA sequences with such narrowly targeted PCR primers.

Identical ITS sequences were found in widely separated sites from all continents for several of the genotypes studied, suggesting relatively rapid global dispersal. Some ITS types were found in both marine and non-marine environments, which usually have different protist populations. However, other ITS sequences had patchy or restricted distributions, indicating at least a moderate degree of endemicity.

Moreover, strains of cercomonads with the same 18S but different ITS1 sequences differed in phenotype with respect to characteristics such as morphology, salinity tolerance, and propensity for cyst formation. This suggests that global protist biodiversity may be richer than previously suspected.

The authors conclude that these new findings support the moderate endemicity model of microbial biogeography, with some cercomonad strains being globally dispersed while others are geographically restricted. The issue of possible under-sampling of the rich diversity of the protozoa needs to be taken into account in further studies; this way, a more accurate picture of their global distribution and importance may be obtained.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcevolbiol/

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>