Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA analysis shows true dispersal of protozoa

13.09.2007
In contrast to previous findings, it seems that the global distribution of macro- and microorganisms might be similar.

A study in the online open access journal, BMC Evolutionary Biology, shows that some protozoa are globally dispersed, while others are geographically restricted - by looking at a new fast-evolving DNA marker. The study also reveals that the biodiversity of protozoa may be much higher than previously realised.

It has long been argued that the small size and huge populations of microorganisms aids their global dispersal. 'Everything is everywhere, but the environment selects' said Lourens Baas-Becking in 1934. Today, this Ubiquitous Dispersal Hypothesis (UDH) remains controversial compared to the alternative possibility of endemicity - the tendency of organisms to be confined to specific regions - as is found for many macro-organisms. While previous morphological and molecular analyses of environmental samples from around the world have provided evidence for UDH, these markers evolve too slowly to allow a really rigorous test of the hypothesis.

David Bass and colleagues at the University of Oxford and elsewhere, have carried out an analysis of the global distribution and diversity of three narrow taxonomic groups of cercomonads (heterotrophic flagellate protozoa) based upon PCR, cloning and sequencing of ITS1 rDNA sequences from samples gathered from around the world. ITS1 is a faster-evolving marker than the more commonly used 18S rDNA and therefore allowed the study to be done at a higher phylogenetic resolution. This approach is robust, being independent of the ability to culture or see the organism being studied.

They sequenced gene libraries of soil, freshwater, and marine cercomonads constructed from 47-80 samples per group from a wide range of habitats in locations including Panama, the Pacific, the Caribbean, Peru, UK, Greece, France, Germany, India, Japan, British Columbia, Australia and New Zealand. The study is unique in screening such large numbers of globally distributed environmental DNA sequences with such narrowly targeted PCR primers.

Identical ITS sequences were found in widely separated sites from all continents for several of the genotypes studied, suggesting relatively rapid global dispersal. Some ITS types were found in both marine and non-marine environments, which usually have different protist populations. However, other ITS sequences had patchy or restricted distributions, indicating at least a moderate degree of endemicity.

Moreover, strains of cercomonads with the same 18S but different ITS1 sequences differed in phenotype with respect to characteristics such as morphology, salinity tolerance, and propensity for cyst formation. This suggests that global protist biodiversity may be richer than previously suspected.

The authors conclude that these new findings support the moderate endemicity model of microbial biogeography, with some cercomonad strains being globally dispersed while others are geographically restricted. The issue of possible under-sampling of the rich diversity of the protozoa needs to be taken into account in further studies; this way, a more accurate picture of their global distribution and importance may be obtained.

Charlotte Webber | alfa
Further information:
http://www.biomedcentral.com/bmcevolbiol/

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>