Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel virus detection identifies new viruses in study of respiratory infections and asthma attacks

10.09.2007
A new study has found an unexpected number of viruses and viral subtypes in patients with respiratory tract infections (RTIs). The technique used in the study may help identify new viruses associated with human diseases. The study is published in the September 15 issue of The Journal of Infectious Diseases, now available online.

RTIs, such as the common cold, are associated with some of the most common viral infections, and increase the risk of an asthma attack in those with the condition. Fifty to 80 percent of asthma exacerbations are precipitated by viral upper RTIs, and yet these viruses are still poorly understood.

The Virochip technique, a DNA microarray or genome chip developed by researchers at the University of California, San Francisco, uses the most conserved sequences of all known viruses of humans, animals, plants, and microbes for its detection system. The new study is the first to employ this strategy to investigate the viruses associated with RTIs in people with and without asthma.

The study, conducted by Amy Kistler, PhD, and colleagues in California, Illinois, and Missouri, used several methods to test 53 asthmatic and 30 non-asthmatic adults for viruses at various stages of health. Compared to the conventional methods of viral culture and the highly sensitive polymerase chain reaction (PCR) method, the Virochip had excellent agreement in terms of identifying viral pathogens, and proved to be both highly sensitive and specific.

The method “detected remarkable and unanticipated diversity” of viruses linked with RTIs and identified “a wholly new branch of the phylogenetic tree,” for the human rhinovirus, one of the causative agents of the common cold virus, Dr. Kistler notes, showing that even with a small test group the Virochip enabled detection of new viruses that were not possible to culture. The researchers also detected 30 distinct known species of rhinoviruses and found that only one of the two coronaviruses thought to be responsible for up to 15 percent of all colds in the United States was detectable in this study population. Instead, two newly described strains of coronaviruses dominated.

These findings are particularly important given the poor understanding of the role of viral diversity in RTIs and in asthma exacerbations. As a next step, Kistler suggested that future groups use the Virochip to continue to accumulate knowledge about such viruses. “The range and depth of viral detection [using the Virochip] is significant, since gaining a comprehensive understanding of the viral pathogen diversity associated with asthma exacerbations may enable the development of specific strategies for treating or preventing asthma exacerbations caused by viral respiratory infection.”

In an accompanying editorial, James E. Gern, MD and William W. Busse, MD of the University of Wisconsin School of Medicine and Public Health agreed that the Virochip assay could prove an excellent new tool for future studies looking to detect and understand novel viruses associated with respiratory illnesses.

Steve Baragona | EurekAlert!
Further information:
http://www.idsociety.org

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>