Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Climatic variations influence the emergence of cholera in Africa

Cholera is an infectious disease caused by a bacterium, the bacillus Vibrio cholerae. In 2004, 101 383 cases, including 95 000 solely for the African continent, and 2 345 deaths were reported to the World Health Organization.

Global climate change has for several years been contributing greatly to the spread of cholera through associated increase in the frequency of torrential rain, floods and periods of drought. It is now established that the spread of zooplankton which harbours the Vibrio cholerae bacterium follows that of phytoplankton, whose growth is directly related to climate variations.

However, a host of factors act on the climatic conditions and they are difficult to study. Certain parameters vary depending on the regions of the world whereas others act on the global scale. The interactions between the climate and emergence of cholera must therefore be studied region by region. Research has been ongoing in Bangladesh and also in South America for many years, but up to now few studies have been conducted in Africa. Yet it is on that continent that the public health situation is giving the most cause for concern.

A study published by research scientists of the Laboratoire de Génétique et Evolution des Maladies Infectieuses (GEMI), mixed research unit IRD/CNRS (2), is the first to yield evidence of the correlations between the outbreak of cholera epidemics and climatic data in 5 West African countries (Togo, Ivory Coast, Ghana, Benin and Nigeria). The research team set up an epidemiological database founded on cases recorded by the WHO over a 20-year period, between 1975 and 1995, in each of these countries. Comparison of these figures with parameters of local and global climate variations showed the factors particularly involved to be the volume of rainfall and the Indian Oscillation Index (IOI), an indicator of the global climate variability constructed from variations in atmospheric pressure in the Indian Ocean. Values of this index lower than –1 showed an association with a warm event such as an increase in sea surface temperature. In contrast, values above +1 coincided with cold events.

The annual rainfall regime and the IOI act on the aquatic environment in which Vibrio cholerae develops (estuaries, sea shores, river beds and so on). In the wild, the cholera bacillus lives in contact with small aquatic crustaceans, copepods, are a component of the zooplankton. These microscopic animals, which constitute the principal reservoir of the bacterium, feed on phytoplankton. They therefore have a tendency to congregate in the zones where the density of microscopic algae is highest. This relationship is fundamentally important. It provides a means to monitor the areas rich in plankton by remote sensing, and therefore to detect from space the potential reservoirs for Vibrio around the coasts.

Outbreaks of cholera appear irregular and, in order better to understand the epidemic pattern dynamics, the GEMI researchers used an adapted statistical tool that favours a wavelet analysis method. This novel process allows comparison of the frequencies of epidemic outbreaks with a range of climatic or environmental parameters (climate variability index, volume of precipitation, phytoplankton concentration near the coasts). This approach also takes into account the random variation of frequencies of emergence of epidemic foci.

The research team thus successfully linked the number of new cases of cholera first to the global climate variability index and then to monthly rainfall readings between 1989 and 1994. For that period, a frequency of epidemic occurrence of 2 to 3 years was indicated for the countries studied, except for the Ivory Coast. A significant correlation was also observed between the IOI and the annual rainfall regime for these same four countries. Furthermore, analysis of the interannual variability of rainfall between 1975 and 1996 indicated the existence of a 3 to 5–year long cycle in the appearance of the disease for the whole of the areas covered by the study. The IOI and volume of precipitation are therefore two climatic variables that appear to be strongly correlated with the appearance of epidemic foci of cholera. The latter usually develop during seasonal periods but their rhythm period can also exceed the annual cycle (between 2 to 5 years). In other words, indirect relationships between climatic variations or variations in rainfall volume and emergence of foci of infection can persist for several years. These results agree with those obtained previously in Bangladesh and South America.

Over the coming years, the results of this research work should contribute to the creation of an early warning system that takes climatic parameters into account for prediction of cholera epidemic dynamics. That should facilitate the organization of prevention actions, such as drinking water filtration schemes, and the planning of care provision for people by supplying medical kits and rehydration kits. This kind of approach could also be applied to the understanding and prevention of other climate-sensitive illnesses such as malaria, dengue and other vector-borne diseases.

Grégory Fléchet -IRD

Grégory Fléchet | alfa
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>