Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Headshots do not cause brain damage

05.09.2007
Heading a soccer ball does not cause brain damage, at least not any damage that can be traced in the spinal fluid of soccer players. This is shown in a study from the Sahlgrenska Academy, where researchers looked for biochemical markers in amateur soccer players.

The findings are published in the latest issue of the scientific journal British Journal of Sports Medicine.

"Thus far, neuropsychological tests and x-ray examinations have not been able to provide an unequivocal answer to the question of whether heading in soccer can cause permanent brain damage. Our research team has tackled the issue from another angle, monitoring instead various neurochemical markers in the spinal fluid," says Henrik Zetterberg, associate professor of neurochemistry at the Sahlgrenska Academy.

In the study, some 20 amateur soccer players were asked to head a ball in a manner similar to a common corner kick. A week after the training session, the research team took samples of the soccer players' spinal fluid for analysis.

"When nerves and support cells in the brain are damaged, they release various protein markers that can be detected in the spinal fluid, but we could not see any signs that these headshots caused brain damage," says Henrik Zetterberg.

Half of the players performed 10 approved headshots, while the other half headed the ball 20 times. The researchers could not see any difference between the players who headed ten or twenty shots, nor between headshooters and a matched control group that did not head any shots.

"In an average match there are a total of maybe six headshots, so in our study we overdosed the number of headshots. Since we still can't detect any sign of brain damage, we can say that heading the ball is not dangerous," says Henrik Zetterberg.

In a previous study, the same research team asked amateur boxers to undergo a similar test. In that study, they found markers in the spinal fluid that indicated that there was damage to the brain.

"The forces that impact the brain in a headshot are considerably more limited than those from a series of blows to the head. This is probably due to a combination of less kinetic energy and a greater ability to stabilize the head in headshot compared with boxing," says Henrik Zetterberg.

For more information, please contact:
Associate Professor Henrik Zetterberg, cell phone: +46 (0)70-860 37 55; e-mail: henrik.zetterberg@clinchem.gu.se
Journal: British Journal of Sports Medicine
Title of article: No neurochemical evidence for brain injury caused by heading in soccer

Authors: Henrik Zetterberg, Michael Jonsson, Abdullah Rasulzada, Cornel Popa, Ewa Styrud, Max Albert Hietala, Lars Rosengren, Anders Wallin, and Kaj Blennow

Elin Lindström Claessen
Information Officer, the Sahlgrenska Academy at Göteborgs University
Phone: +46 (0)31-786 3837, cell phone +46 (0)70-829 43 03
e-mail: elin.lindstrom@sahlgrenska.gu.se

Elin Lindström Claessen | idw
Further information:
http://www.vr.se

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>