Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study identifies key player in the body’s immune response to chronic stress

Osteopontin (OPN), a protein molecule involved in many different cellular processes, plays a significant role in immune deficiency and organ atrophy following chronic physiological stress, resulting in increased susceptibility to illness. These findings appear in the September 4th issue of the Proceedings of the National Academy of Sciences.

The study is supported by the National Space Biomedical Research Institute (NSBRI), the Busch Biomedical Research Grant, National Multiple Sclerosis Society, and Rutgers Technology Commercialization Fund. Authors on the paper include Dr. Yufang Shi, investigator on NSBRI’s Radiation Effects Team and professor of molecular genetics, microbiology and immunology at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Dr. David T. Denhardt, one of the discoverers of OPN, professor of cell biology and neuroscience at Rutgers, the State University of New Jersey, and Kathryn X. Wang, graduate student in the Rutgers Graduate Program in Cell and Developmental Biology.

“Following periods of prolonged physical stress such as when astronauts live in microgravity, white blood cells that fight disease, called lymphocytes, die at an increased rate and immune system organs like the thymus and spleen lose mass and begin to atrophy,” said Dr. Shi.

Immune system organs include the thymus, spleen, lymph nodes and bone marrow.

“By determining the role of lymphocyte death in a stressed immune system, we may be able to develop therapies to maintain a healthy immune system, which can help in space and in clinical settings to prevent and treat malignancy and infections,” Shi said.

It is known that spaceflight and long periods of physiological stress cause changes in the immune system. “Until now, the role of OPN in the stress response of immune organs has never been examined,” Shi said.

Evidence suggests that astronauts may suffer increased rates of infection after flight. Through an animal study, Shi and colleagues simulated spaceflight conditions to investigate its effects on the immune system. They found that infection-fighting white blood cells inappropriately die off in large numbers, leading to immune-organ atrophy and the decreased ability of the immune system to protect the body from illness.

The team studied two types of mice, one group with the normal OPN gene and another group lacking this gene. The mice experienced three days of hindlimb unloading, a widely used technique to simulate the physiologic changes that astronauts experience during spaceflight. With this technique, body fluids shift similarly to how they do in microgravity (toward the head instead of toward the extremities) and immune system changes occur.

Mice of both types made up the control groups, which did not undergo unloading.

After three days, the researchers compared the mice with normal OPN and the OPN-lacking mice. The normal OPN mice experienced weight loss, spleen and thymus atrophy, and a reduced number of white blood cells. In addition, increased levels of corticosterone, a steroid that contributes to the death of white blood cells, were found only in the normal OPN mice studied. By contrast, the mice lacking the OPN gene showed statistically insignificant changes in weight and the levels of corticosterone, and were more similar to the control group.

“White blood cell death in the spleen and thymus was evident only in the mice with normal OPN,” Shi said. “Since white blood cells were dying rather than increasing, that indicates partly why immune system organs atrophy during prolonged physical stress.”

The team concluded that under chronic physical stress, OPN must be present for the increase in corticosterone, which leads to atrophy and white blood cell death.

Shi hopes that this finding will lead to preventative treatments in the future.

“Already we’re researching an antibody that can remove OPN from blood serum. Perhaps one day, we can turn this research into a therapy to counteract white blood cell death in immune system organs and keep humans healthier during times of prolonged physical stress,” Shi said.

Shi and colleagues want to better understand the mechanisms through which stress affects the immune system, so they can prevent illness in space and help those who suffer from illness following physiological stress here on Earth.

NSBRI projects address space health concerns such as bone and muscle loss, cardiovascular changes, balance problems, sleep disturbances, radiation exposure, nutrition, physical fitness, rehabilitation, remote-treatment medical technologies, and neurobehavioral and psychosocial factors. Research findings will also impact the understanding and treatment of similar medical conditions experienced on Earth.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | NSBRI
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>