Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies key player in the body’s immune response to chronic stress

05.09.2007
Osteopontin (OPN), a protein molecule involved in many different cellular processes, plays a significant role in immune deficiency and organ atrophy following chronic physiological stress, resulting in increased susceptibility to illness. These findings appear in the September 4th issue of the Proceedings of the National Academy of Sciences.

The study is supported by the National Space Biomedical Research Institute (NSBRI), the Busch Biomedical Research Grant, National Multiple Sclerosis Society, and Rutgers Technology Commercialization Fund. Authors on the paper include Dr. Yufang Shi, investigator on NSBRI’s Radiation Effects Team and professor of molecular genetics, microbiology and immunology at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Dr. David T. Denhardt, one of the discoverers of OPN, professor of cell biology and neuroscience at Rutgers, the State University of New Jersey, and Kathryn X. Wang, graduate student in the Rutgers Graduate Program in Cell and Developmental Biology.

“Following periods of prolonged physical stress such as when astronauts live in microgravity, white blood cells that fight disease, called lymphocytes, die at an increased rate and immune system organs like the thymus and spleen lose mass and begin to atrophy,” said Dr. Shi.

Immune system organs include the thymus, spleen, lymph nodes and bone marrow.

“By determining the role of lymphocyte death in a stressed immune system, we may be able to develop therapies to maintain a healthy immune system, which can help in space and in clinical settings to prevent and treat malignancy and infections,” Shi said.

It is known that spaceflight and long periods of physiological stress cause changes in the immune system. “Until now, the role of OPN in the stress response of immune organs has never been examined,” Shi said.

Evidence suggests that astronauts may suffer increased rates of infection after flight. Through an animal study, Shi and colleagues simulated spaceflight conditions to investigate its effects on the immune system. They found that infection-fighting white blood cells inappropriately die off in large numbers, leading to immune-organ atrophy and the decreased ability of the immune system to protect the body from illness.

The team studied two types of mice, one group with the normal OPN gene and another group lacking this gene. The mice experienced three days of hindlimb unloading, a widely used technique to simulate the physiologic changes that astronauts experience during spaceflight. With this technique, body fluids shift similarly to how they do in microgravity (toward the head instead of toward the extremities) and immune system changes occur.

Mice of both types made up the control groups, which did not undergo unloading.

After three days, the researchers compared the mice with normal OPN and the OPN-lacking mice. The normal OPN mice experienced weight loss, spleen and thymus atrophy, and a reduced number of white blood cells. In addition, increased levels of corticosterone, a steroid that contributes to the death of white blood cells, were found only in the normal OPN mice studied. By contrast, the mice lacking the OPN gene showed statistically insignificant changes in weight and the levels of corticosterone, and were more similar to the control group.

“White blood cell death in the spleen and thymus was evident only in the mice with normal OPN,” Shi said. “Since white blood cells were dying rather than increasing, that indicates partly why immune system organs atrophy during prolonged physical stress.”

The team concluded that under chronic physical stress, OPN must be present for the increase in corticosterone, which leads to atrophy and white blood cell death.

Shi hopes that this finding will lead to preventative treatments in the future.

“Already we’re researching an antibody that can remove OPN from blood serum. Perhaps one day, we can turn this research into a therapy to counteract white blood cell death in immune system organs and keep humans healthier during times of prolonged physical stress,” Shi said.

Shi and colleagues want to better understand the mechanisms through which stress affects the immune system, so they can prevent illness in space and help those who suffer from illness following physiological stress here on Earth.

NSBRI projects address space health concerns such as bone and muscle loss, cardiovascular changes, balance problems, sleep disturbances, radiation exposure, nutrition, physical fitness, rehabilitation, remote-treatment medical technologies, and neurobehavioral and psychosocial factors. Research findings will also impact the understanding and treatment of similar medical conditions experienced on Earth.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=105

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>