Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study identifies key player in the body’s immune response to chronic stress

05.09.2007
Osteopontin (OPN), a protein molecule involved in many different cellular processes, plays a significant role in immune deficiency and organ atrophy following chronic physiological stress, resulting in increased susceptibility to illness. These findings appear in the September 4th issue of the Proceedings of the National Academy of Sciences.

The study is supported by the National Space Biomedical Research Institute (NSBRI), the Busch Biomedical Research Grant, National Multiple Sclerosis Society, and Rutgers Technology Commercialization Fund. Authors on the paper include Dr. Yufang Shi, investigator on NSBRI’s Radiation Effects Team and professor of molecular genetics, microbiology and immunology at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Dr. David T. Denhardt, one of the discoverers of OPN, professor of cell biology and neuroscience at Rutgers, the State University of New Jersey, and Kathryn X. Wang, graduate student in the Rutgers Graduate Program in Cell and Developmental Biology.

“Following periods of prolonged physical stress such as when astronauts live in microgravity, white blood cells that fight disease, called lymphocytes, die at an increased rate and immune system organs like the thymus and spleen lose mass and begin to atrophy,” said Dr. Shi.

Immune system organs include the thymus, spleen, lymph nodes and bone marrow.

“By determining the role of lymphocyte death in a stressed immune system, we may be able to develop therapies to maintain a healthy immune system, which can help in space and in clinical settings to prevent and treat malignancy and infections,” Shi said.

It is known that spaceflight and long periods of physiological stress cause changes in the immune system. “Until now, the role of OPN in the stress response of immune organs has never been examined,” Shi said.

Evidence suggests that astronauts may suffer increased rates of infection after flight. Through an animal study, Shi and colleagues simulated spaceflight conditions to investigate its effects on the immune system. They found that infection-fighting white blood cells inappropriately die off in large numbers, leading to immune-organ atrophy and the decreased ability of the immune system to protect the body from illness.

The team studied two types of mice, one group with the normal OPN gene and another group lacking this gene. The mice experienced three days of hindlimb unloading, a widely used technique to simulate the physiologic changes that astronauts experience during spaceflight. With this technique, body fluids shift similarly to how they do in microgravity (toward the head instead of toward the extremities) and immune system changes occur.

Mice of both types made up the control groups, which did not undergo unloading.

After three days, the researchers compared the mice with normal OPN and the OPN-lacking mice. The normal OPN mice experienced weight loss, spleen and thymus atrophy, and a reduced number of white blood cells. In addition, increased levels of corticosterone, a steroid that contributes to the death of white blood cells, were found only in the normal OPN mice studied. By contrast, the mice lacking the OPN gene showed statistically insignificant changes in weight and the levels of corticosterone, and were more similar to the control group.

“White blood cell death in the spleen and thymus was evident only in the mice with normal OPN,” Shi said. “Since white blood cells were dying rather than increasing, that indicates partly why immune system organs atrophy during prolonged physical stress.”

The team concluded that under chronic physical stress, OPN must be present for the increase in corticosterone, which leads to atrophy and white blood cell death.

Shi hopes that this finding will lead to preventative treatments in the future.

“Already we’re researching an antibody that can remove OPN from blood serum. Perhaps one day, we can turn this research into a therapy to counteract white blood cell death in immune system organs and keep humans healthier during times of prolonged physical stress,” Shi said.

Shi and colleagues want to better understand the mechanisms through which stress affects the immune system, so they can prevent illness in space and help those who suffer from illness following physiological stress here on Earth.

NSBRI projects address space health concerns such as bone and muscle loss, cardiovascular changes, balance problems, sleep disturbances, radiation exposure, nutrition, physical fitness, rehabilitation, remote-treatment medical technologies, and neurobehavioral and psychosocial factors. Research findings will also impact the understanding and treatment of similar medical conditions experienced on Earth.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 70 institutions across the United States.

Lauren Hammit | NSBRI
Further information:
http://www.nsbri.org/NewsPublicOut/Release.epl?r=105

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>