Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NASA Study will Help Stop Stowaways to Mars

NASA clean rooms, where scientists and engineers assemble spacecraft, have joined hot springs, ice caves, and deep mines as unlikely places where scientists have discovered ultra-hardy organisms collectively known as ‘extremophiles’. Some species of bacteria uncovered in a recent NASA study have never been detected anywhere else.

According to Dr. Kasthuri Venkateswaran, who led the study conducted at NASA’s Jet Propulsion Laboratory in Pasadena, California, “These findings will advance the search for life on Mars and other worlds both by sparking improved cleaning and sterilization methods and by preventing false-positive results in future experiments to detect extraterrestrial life.”

NASA builds its spacecraft in rooms designed to minimize contamination by airborne particles because dust and its microbial passengers can foul instruments and invalidate experiments. If scientists someday find microbes on Mars, they will want to be sure they aren’t just hitchhikers from Earth.

Clean rooms used in the space program already undergo extensive cleaning and air filtering procedures, and the detection technology employed in this study will help NASA to develop and monitor improvements. Still, it is extremely difficult to eliminate all dust particles and microbes without damaging the electronic instruments the process is intended to protect.

Identifying and archiving clean-room microbes serves as an effective backup to the cleaning and sterilization efforts. Armed with a list of microbes that could possibly stow away on its spacecraft, NASA can disregard them if they turn up in future Martian samples.

As reported in FEMS Microbiology Ecology, a journal of the Federation of European Microbiological Societies, Venkateswaran’s team used a technology known as ribosomal RNA gene-sequence analysis to detect bacteria in clean rooms at Kennedy Space Center, Johnson Space Center, and the Jet Propulsion Laboratory. This was the first time that this technology was applied to NASA clean rooms.

They found that both the total number of bacteria and the diversity of bacterial species were much higher than previously detected. This has implications not only for NASA and other space agencies, but also for hospital operating rooms and industries such as semiconductor manufacturing, where cleanliness and sterility are critical.

Clean rooms are considered extreme environments for microbes because water and nutrients are in extremely short supply. Nevertheless, some bacteria are able to survive on what little moisture the low-humidity air provides and on trace elements in the wall paint, residue of cleaning solvents, and in the spacecraft materials, themselves.

Lucy Mansfield | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>