Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Circulating fats kill transplanted pancreas cells, study shows

Dietary restrictions or other strategies that limit fat formation might make pancreatic cell transplants more effective, UT Southwestern Medical Center researchers report.

Using animal models, the researchers discovered that pancreatic islet cells transplanted into the liver fail not only because of immune rejection, but also because of overexposure to toxic fats that are synthesized by the surrounding liver cells and flood the pancreatic transplants. Their findings appear in the September issue of the journal Diabetes.

To date, a few hundred people have received transplants of complexes of pancreatic cells, called islets. The islets are implanted in the liver, where they at first make insulin, but over months or years their production often declines.

“By understanding how fat affects these cells, maybe we can improve islet transplant and make it last a bit longer,” said Dr. Roger Unger, professor of internal medicine at UT Southwestern and senior author of the study.

During islet transplantation, the pancreatic cell complexes are injected into a large vein that feeds into the liver, where they lodge. Cells within the islets, called beta cells, then produce insulin. The person receiving the transplant must take anti-rejection drugs.

Dr. Unger said that after two years, 87 percent of recipients must resume taking insulin, a problem that has led clinicians to investigate if the anti-rejection drugs are at fault, or if some other mechanism is at work.

In the current study, UT Southwestern researchers tested the hypothesis that fats in the liver might be killing the beta cells. The liver receives its blood supply directly from the digestive system, which provides a rich concentration of fats and sugars to the transplanted islet cells – conditions the cells would not be exposed to in their normal environment in the pancreas. The researchers also theorized that the insulin that each islet produced might stimulate fat production around itself, adding to the problem.

The researchers first injected rats with a drug that kills pancreatic beta cells in order to mimic human insulin-dependent, or juvenile, diabetes (type 1), a condition in which beta cells are unable to produce insulin. They then transplanted beta cells into the animals’ livers. Fat accumulations were found around islets four weeks after transplantation. Insulin levels declined, and the animals died at 15 weeks.

Another group of similar rats was then exposed to one of two conditions that reduce body fat – a restricted diet or administration of leptin, a hormone that decreases appetite and increases metabolism. In both cases, more beta cells survived. Rats that had received leptin also showed the highest survival rate of beta cells.

Because the differences among the groups of rats could be traced to the amount of fat, and no anti-rejection drugs had been given, the results validate their theory that fat was the culprit in killing the beta cells, Dr. Unger said.

These results also suggest that diet and weight control might enable transplanted beta cells in humans to survive longer or avoid destruction, he said.

“This seems very easy to prevent, but it’s not being targeted by researchers,” he said.

Dr. Unger said the study could also serve as a model for death of beta cells in non-insulin-dependent, or adult-onset, diabetes (type 2), a condition that is associated largely with obesity. His group is now working with other researchers at UT Southwestern to determine if excess fat is killing cells in obese humans.

Aline McKenzie | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>