Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circulating fats kill transplanted pancreas cells, study shows

29.08.2007
Dietary restrictions or other strategies that limit fat formation might make pancreatic cell transplants more effective, UT Southwestern Medical Center researchers report.

Using animal models, the researchers discovered that pancreatic islet cells transplanted into the liver fail not only because of immune rejection, but also because of overexposure to toxic fats that are synthesized by the surrounding liver cells and flood the pancreatic transplants. Their findings appear in the September issue of the journal Diabetes.

To date, a few hundred people have received transplants of complexes of pancreatic cells, called islets. The islets are implanted in the liver, where they at first make insulin, but over months or years their production often declines.

“By understanding how fat affects these cells, maybe we can improve islet transplant and make it last a bit longer,” said Dr. Roger Unger, professor of internal medicine at UT Southwestern and senior author of the study.

During islet transplantation, the pancreatic cell complexes are injected into a large vein that feeds into the liver, where they lodge. Cells within the islets, called beta cells, then produce insulin. The person receiving the transplant must take anti-rejection drugs.

Dr. Unger said that after two years, 87 percent of recipients must resume taking insulin, a problem that has led clinicians to investigate if the anti-rejection drugs are at fault, or if some other mechanism is at work.

In the current study, UT Southwestern researchers tested the hypothesis that fats in the liver might be killing the beta cells. The liver receives its blood supply directly from the digestive system, which provides a rich concentration of fats and sugars to the transplanted islet cells – conditions the cells would not be exposed to in their normal environment in the pancreas. The researchers also theorized that the insulin that each islet produced might stimulate fat production around itself, adding to the problem.

The researchers first injected rats with a drug that kills pancreatic beta cells in order to mimic human insulin-dependent, or juvenile, diabetes (type 1), a condition in which beta cells are unable to produce insulin. They then transplanted beta cells into the animals’ livers. Fat accumulations were found around islets four weeks after transplantation. Insulin levels declined, and the animals died at 15 weeks.

Another group of similar rats was then exposed to one of two conditions that reduce body fat – a restricted diet or administration of leptin, a hormone that decreases appetite and increases metabolism. In both cases, more beta cells survived. Rats that had received leptin also showed the highest survival rate of beta cells.

Because the differences among the groups of rats could be traced to the amount of fat, and no anti-rejection drugs had been given, the results validate their theory that fat was the culprit in killing the beta cells, Dr. Unger said.

These results also suggest that diet and weight control might enable transplanted beta cells in humans to survive longer or avoid destruction, he said.

“This seems very easy to prevent, but it’s not being targeted by researchers,” he said.

Dr. Unger said the study could also serve as a model for death of beta cells in non-insulin-dependent, or adult-onset, diabetes (type 2), a condition that is associated largely with obesity. His group is now working with other researchers at UT Southwestern to determine if excess fat is killing cells in obese humans.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>