Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Human testes may multiply mutations

28.08.2007
The organs that produce sperm also may make it easier for mutations to pass to offspring, USC biologists say.

The testes in humans may act as mutation multipliers that raise the odds of passing improved DNA to offspring – but that can also backfire by increasing the frequency of certain diseases.

The new theory is part of a study, appearing in PLOS Biology, that tries to explain the puzzlingly high frequency of Apert syndrome, a genetic cranial deformity found in approximately one out of every 70,000 newborns.

The study’s authors suggest that natural selection may favor “germline” cells – the precursors to sperm – carrying a mutation that causes Apert syndrome.

A competitive advantage for mutated sperm precursor cells could explain why Apert strikes 100 to 1,000 times more people than expected from a single mutation.

Useful mutations in sperm precursor cells also may be more likely to pass to the next generation, the authors suggest, “because the effective mutation frequency is elevated beyond the level that can be achieved by the molecular mutation process alone.”

Why natural selection might favor sperm precursor cells carrying a disease mutation is not yet understood.

The authors based their conclusions on an analysis of four human testes and computer models of mutation frequency.

They say their study is the first to check the location of mutant germline cells in the testes in any species. The result was surprising.

“You would expect that when a new mutation arose, it could arise virtually anywhere in the organ,” said Norman Arnheim, holder of the Ester Dornsife Chair in Biological Sciences at USC and one of the co-leaders of the project along with computational biologist Peter Calabrese.

“But when we divided the testes up, we didn’t find that. What we found were some very big clusters of precursor cells that were mutant.”

The data did not support the theory that the site of the mutation in the Apert gene is unusually prone to DNA change.

Another explanation – that the mutations arise very early in the life of a germline cell and multiply through subsequent divisions – also did not fit the data, Arnheim and Calabrese said.

But the clusters of mutant cells could be explained if the mutant cells made copies of themselves more frequently than normal cells.

If a mutant cell divided into two copies of itself every four to five years, the extra copies would be enough to explain the clusters, the researchers said.

They added that the model explains the increase in Apert risk with paternal age, while noting that other selection-based models also may be able to explain the same data.

Citing related studies along with their findings, the authors concluded that “it now seems very likely that (natural) selection can be a driving force acting to increase the mutation frequency at a number of genes in humans.”

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Obstructing the ‘inner eye’
07.07.2017 | Friedrich-Schiller-Universität Jena

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>