Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds common component of fruits, vegetables kills prostate cancer cells

22.08.2007
A new University of Georgia study finds that pectin, a type of fiber found in fruits and vegetables and used in making jams and other foods, kills prostate cancer cells.

The study, published in the August issue of the journal Glycobiology, found that exposing prostate cancer cells to pectin under laboratory conditions reduced the number of cells by up to 40 percent. UGA Cancer Center researcher Debra Mohnen and her colleagues at UGA, along with Vijay Kumar, chief of research and development at the VA Medical Center in Augusta, found that the cells literally self-destructed in a process known as apoptosis. Pectin even killed cells that aren’t sensitive to hormone therapy and therefore are difficult to treat with current medications.

“What this paper shows is that if you take human prostate cancer cells and add pectin, you can induce programmed cell death,” said Mohnen, a professor of biochemistry and molecular biology. “If you do the same with non-cancerous cells, cell death doesn’t occur.”

Mohnen’s study adds to the growing body of evidence on the health benefits of pectin, which has been shown to lower cholesterol and glucose levels in humans. Cancer studies using rats and cell cultures have found that pectin can reduce metastasis and prevent lung and colon tumors. Another study found that pectin induces apoptosis in colon cancer cells. Mohnen’s is the first to show that pectin induces apoptosis in prostate cancer cells and brings scientists closer to understanding what makes the common component of plants an effective cancer fighter.

In her lab at UGA’s Complex Carbohydrate Research Center, Mohnen and her team analyzed three different types of commercially available pectin and found large differences in anti-cancer activity. They found that treatment under mild base conditions decreased the anti-cancer properties of pectin while heat treatment significantly increased anti-cancer activity.

Pectin is one of nature’s most complex molecules and has the potential to bind to several sites on cells and to elicit several different cellular responses at the same time. Mohnen and her team are working to identify the smallest structure within pectin that can induce apoptosis with the ultimate goal of developing pectin-based pharmaceuticals or foods with enhanced health benefits.

Mohnen said that more evidence is needed to support the use of specific pectin supplements, but said that most Americans would do well to increase their intake of fruits and vegetables.

“Even though we hear constantly that we’re supposed to eat lots of fruits and vegetables, it wasn’t until we started working on these studies that it finally hit home how really important that was,” she said. “By simply increasing your intake of fruits of vegetables, you’re going to get a lot of pectin and you’re going to get all of the other beneficial phytochemicals at the same time.”

The research was funded by the Georgia Cancer Coalition-Georgia Department of Human Resources, the University of Georgia-Medical College of Georgia Joint Intramural Grants Program and the federal Department of Energy.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Studies and Analyses:

nachricht Do microplastics harbour additional risks by colonization with harmful bacteria?
05.04.2018 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Quantum Technology for Advanced Imaging – QUILT

24.04.2018 | Information Technology

AWI researchers measure a record concentration of microplastic in arctic sea ice

24.04.2018 | Earth Sciences

Complete skin regeneration system of fish unraveled

24.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>