Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Study finds common component of fruits, vegetables kills prostate cancer cells

A new University of Georgia study finds that pectin, a type of fiber found in fruits and vegetables and used in making jams and other foods, kills prostate cancer cells.

The study, published in the August issue of the journal Glycobiology, found that exposing prostate cancer cells to pectin under laboratory conditions reduced the number of cells by up to 40 percent. UGA Cancer Center researcher Debra Mohnen and her colleagues at UGA, along with Vijay Kumar, chief of research and development at the VA Medical Center in Augusta, found that the cells literally self-destructed in a process known as apoptosis. Pectin even killed cells that aren’t sensitive to hormone therapy and therefore are difficult to treat with current medications.

“What this paper shows is that if you take human prostate cancer cells and add pectin, you can induce programmed cell death,” said Mohnen, a professor of biochemistry and molecular biology. “If you do the same with non-cancerous cells, cell death doesn’t occur.”

Mohnen’s study adds to the growing body of evidence on the health benefits of pectin, which has been shown to lower cholesterol and glucose levels in humans. Cancer studies using rats and cell cultures have found that pectin can reduce metastasis and prevent lung and colon tumors. Another study found that pectin induces apoptosis in colon cancer cells. Mohnen’s is the first to show that pectin induces apoptosis in prostate cancer cells and brings scientists closer to understanding what makes the common component of plants an effective cancer fighter.

In her lab at UGA’s Complex Carbohydrate Research Center, Mohnen and her team analyzed three different types of commercially available pectin and found large differences in anti-cancer activity. They found that treatment under mild base conditions decreased the anti-cancer properties of pectin while heat treatment significantly increased anti-cancer activity.

Pectin is one of nature’s most complex molecules and has the potential to bind to several sites on cells and to elicit several different cellular responses at the same time. Mohnen and her team are working to identify the smallest structure within pectin that can induce apoptosis with the ultimate goal of developing pectin-based pharmaceuticals or foods with enhanced health benefits.

Mohnen said that more evidence is needed to support the use of specific pectin supplements, but said that most Americans would do well to increase their intake of fruits and vegetables.

“Even though we hear constantly that we’re supposed to eat lots of fruits and vegetables, it wasn’t until we started working on these studies that it finally hit home how really important that was,” she said. “By simply increasing your intake of fruits of vegetables, you’re going to get a lot of pectin and you’re going to get all of the other beneficial phytochemicals at the same time.”

The research was funded by the Georgia Cancer Coalition-Georgia Department of Human Resources, the University of Georgia-Medical College of Georgia Joint Intramural Grants Program and the federal Department of Energy.

Sam Fahmy | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Diagnoses: When Are Several Opinions Better Than One?
19.07.2016 | Max-Planck-Institut für Bildungsforschung

nachricht High in calories and low in nutrients when adolescents share pictures of food online
07.04.2016 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>