Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling Hot, Hot, Hot: New Study Suggests Ways to Control Fever-Induced Seizures

22.08.2007
When your body cranks up the heat, it’s a sign that something’s wrong—and a fever is designed to help fight off the infection.

But turning up the temperature can have a down side: in about one in 25 infants or small children, high fever can trigger fever-induced (febrile) seizures. While the seizures themselves are generally harmless, a prolonged fever resulting from infection or heatstroke of over 108°F (42°C) can eventually lead to respiratory distress, cognitive dysfunction, brain damage or death.

New research by scientists at the University of Toronto Mississauga and Queen’s University has shown that genetic variation in the foraging gene results in different tolerance for heat stress, and demonstrates how the use of specific drugs can replicate this effect in fruit flies and locusts. While the findings are at an early stage, the researchers suggest that since this genetic pathway is found in other organisms, it could lead to ways to rapidly protect the brain from extremely high fevers in mammals, including humans. The new study appears in the August 22 issue of the journal PLoS ONE, the online, open-access journal from the Public Library of Science.

“Our research suggests that manipulation of a single gene or genetic pathway will be sufficient to rapidly protect the nervous system from damage due to extreme heat stress,” says senior researcher, Professor Marla B. Sokolowski, who holds a Canada Research Chair in Genetics.

In their research, post-doctoral fellow Ken Dawson-Scully and Sokolowski demonstrate that the foraging gene, responsible for a protein called PKG, protects against heat-induced neural failure in fruit flies and locusts. When they increased the temperature by 5°C per minute (starting from 22°C and rising to 42°C), they found that fruit flies with a lower level of PKG experienced neural failure at much higher temperatures than those with higher levels of PKG.

Using drugs that interact with the PKG molecule, the researchers showed it is possible to induce an extremely rapid protection of neural function during heat stress. Queen's biologists Gary Armstrong and Mel Robertson exposed locusts to increasing heat while monitoring the neural circuit that controls breathing. At approximately 30°C (about three minutes before expected neural failure), the researchers injected the locusts with a PKG inhibitor. Compared to locusts who received a placebo injection, the treated locusts showed a rapid and significant protection of their neural circuitry.

“During heat trauma to the brain, there exists a window of opportunity between the time of occurrence of neural dysfunction and eventual brain damage or death,” says Dawson-Scully. “Manipulation of the PKG pathway during this period should increase an individual’s chance of survival.”

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000773
http://www.plos.org/press/pone-02-08-sokolowski1.jpg
http://www.plos.org/press/pone-02-08-sokolowski2.jpg

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>