Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling Hot, Hot, Hot: New Study Suggests Ways to Control Fever-Induced Seizures

22.08.2007
When your body cranks up the heat, it’s a sign that something’s wrong—and a fever is designed to help fight off the infection.

But turning up the temperature can have a down side: in about one in 25 infants or small children, high fever can trigger fever-induced (febrile) seizures. While the seizures themselves are generally harmless, a prolonged fever resulting from infection or heatstroke of over 108°F (42°C) can eventually lead to respiratory distress, cognitive dysfunction, brain damage or death.

New research by scientists at the University of Toronto Mississauga and Queen’s University has shown that genetic variation in the foraging gene results in different tolerance for heat stress, and demonstrates how the use of specific drugs can replicate this effect in fruit flies and locusts. While the findings are at an early stage, the researchers suggest that since this genetic pathway is found in other organisms, it could lead to ways to rapidly protect the brain from extremely high fevers in mammals, including humans. The new study appears in the August 22 issue of the journal PLoS ONE, the online, open-access journal from the Public Library of Science.

“Our research suggests that manipulation of a single gene or genetic pathway will be sufficient to rapidly protect the nervous system from damage due to extreme heat stress,” says senior researcher, Professor Marla B. Sokolowski, who holds a Canada Research Chair in Genetics.

In their research, post-doctoral fellow Ken Dawson-Scully and Sokolowski demonstrate that the foraging gene, responsible for a protein called PKG, protects against heat-induced neural failure in fruit flies and locusts. When they increased the temperature by 5°C per minute (starting from 22°C and rising to 42°C), they found that fruit flies with a lower level of PKG experienced neural failure at much higher temperatures than those with higher levels of PKG.

Using drugs that interact with the PKG molecule, the researchers showed it is possible to induce an extremely rapid protection of neural function during heat stress. Queen's biologists Gary Armstrong and Mel Robertson exposed locusts to increasing heat while monitoring the neural circuit that controls breathing. At approximately 30°C (about three minutes before expected neural failure), the researchers injected the locusts with a PKG inhibitor. Compared to locusts who received a placebo injection, the treated locusts showed a rapid and significant protection of their neural circuitry.

“During heat trauma to the brain, there exists a window of opportunity between the time of occurrence of neural dysfunction and eventual brain damage or death,” says Dawson-Scully. “Manipulation of the PKG pathway during this period should increase an individual’s chance of survival.”

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000773
http://www.plos.org/press/pone-02-08-sokolowski1.jpg
http://www.plos.org/press/pone-02-08-sokolowski2.jpg

More articles from Studies and Analyses:

nachricht Drone vs. truck deliveries: Which create less carbon pollution?
31.05.2017 | University of Washington

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>