Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Feeling Hot, Hot, Hot: New Study Suggests Ways to Control Fever-Induced Seizures

22.08.2007
When your body cranks up the heat, it’s a sign that something’s wrong—and a fever is designed to help fight off the infection.

But turning up the temperature can have a down side: in about one in 25 infants or small children, high fever can trigger fever-induced (febrile) seizures. While the seizures themselves are generally harmless, a prolonged fever resulting from infection or heatstroke of over 108°F (42°C) can eventually lead to respiratory distress, cognitive dysfunction, brain damage or death.

New research by scientists at the University of Toronto Mississauga and Queen’s University has shown that genetic variation in the foraging gene results in different tolerance for heat stress, and demonstrates how the use of specific drugs can replicate this effect in fruit flies and locusts. While the findings are at an early stage, the researchers suggest that since this genetic pathway is found in other organisms, it could lead to ways to rapidly protect the brain from extremely high fevers in mammals, including humans. The new study appears in the August 22 issue of the journal PLoS ONE, the online, open-access journal from the Public Library of Science.

“Our research suggests that manipulation of a single gene or genetic pathway will be sufficient to rapidly protect the nervous system from damage due to extreme heat stress,” says senior researcher, Professor Marla B. Sokolowski, who holds a Canada Research Chair in Genetics.

In their research, post-doctoral fellow Ken Dawson-Scully and Sokolowski demonstrate that the foraging gene, responsible for a protein called PKG, protects against heat-induced neural failure in fruit flies and locusts. When they increased the temperature by 5°C per minute (starting from 22°C and rising to 42°C), they found that fruit flies with a lower level of PKG experienced neural failure at much higher temperatures than those with higher levels of PKG.

Using drugs that interact with the PKG molecule, the researchers showed it is possible to induce an extremely rapid protection of neural function during heat stress. Queen's biologists Gary Armstrong and Mel Robertson exposed locusts to increasing heat while monitoring the neural circuit that controls breathing. At approximately 30°C (about three minutes before expected neural failure), the researchers injected the locusts with a PKG inhibitor. Compared to locusts who received a placebo injection, the treated locusts showed a rapid and significant protection of their neural circuitry.

“During heat trauma to the brain, there exists a window of opportunity between the time of occurrence of neural dysfunction and eventual brain damage or death,” says Dawson-Scully. “Manipulation of the PKG pathway during this period should increase an individual’s chance of survival.”

Andrew Hyde | alfa
Further information:
http://www.plosone.org/doi/pone.0000773
http://www.plos.org/press/pone-02-08-sokolowski1.jpg
http://www.plos.org/press/pone-02-08-sokolowski2.jpg

More articles from Studies and Analyses:

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

nachricht Scientists reveal source of human heartbeat in 3-D
07.08.2017 | University of Manchester

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Climate change: In their old age, trees still accumulate large quantities of carbon

17.08.2017 | Earth Sciences

Modern genetic sequencing tools give clearer picture of how corals are related

17.08.2017 | Life Sciences

Superconductivity research reveals potential new state of matter

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>