Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last minute rethink

22.08.2007
Neuroscientists at UCL (University College London) and Ghent University have found the brain circuit involved in thinking twice and checking impulsive behaviour. The duo discovered that an area in the fronto-median cortex of the brain is activated when you begin to think ‘I’m not going to go through with this’ and stop yourself doing what you were about to do.

According to the study, published in the ‘Journal of Neuroscience’ today, this specific brain network is involved in self-control and checks and limits our desired actions.

Professor Patrick Haggard, UCL Institute of Neuroscience, said: “Many people recognise the ‘little voice inside the head’ that stops you from doing something, like pressing the send button on an angry email. We all have choices in our daily life, and we may decide not to go ahead with something we’ve planned. Quite often we have an immediate desire to perform an action, but reflecting on the wider consequences could, and sometimes should, make us cancel the action. Our study identifies the brain processes involved in that last-minute rethink about what we’re doing. These brain functions are important for human society in general: the ability to withhold an action prevents us all from being egoists, driven by our immediate desires.”

The decision you make on whether to act or not in a given situation is crucial to everyday life. Past studies have focussed on people’s ability to cancel a prepared action in response to an external signal, like a stop sign. In this study, for the first time, the participants always prepared the action, but then decided for themselves whether to go through with the action, or whether to withhold it at the last minute. This allowed the scientists to identify the brain basis of self-initiated inhibition of action.

Brain activity in the fronto-median cortex was monitored using fMRI brain-imaging while volunteers made up their minds when to push a button. Prior to the test participants were asked to change their minds occasionally by deciding against pushing the button at the last minute.

Participants were asked to indicate when they began to prepare the action by reporting the position of a clock hand. This indicated to the scientists when the inhibitory brain activity was likely to occur, on those occasions when the participants withheld the action. A small area in the anterior fronto-median cortex of the brain was active only when people inhibited an action they had previously prepared. When people prepared and actually went through with the action, this area was considerably less active.

“We wanted to identify the brain areas that show more activity when people prepare an action and then inhibit it, than when they prepare the same action and then actually make it” said Dr Marcel Brass, Ghent University.

The researchers were even able to predict to some degree how often individual volunteers inhibited actions from the brain activity in the fronto-median cortex. Those with strong activity in this area withheld actions frequently, while those with weak activity pressed the button more frequently, despite the instruction to sometimes withhold action.

Professor Haggard said: “This could be a factor in why some individuals are impulsive, while others are reluctant to act. Developments in brain imaging are bringing us ever closer to a scientific understanding of why a particular individual is the way they are. The ability to check, reconsider and withhold an action is essential given the complex social settings in which we live.”

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

nachricht First form of therapy for childhood dementia CLN2 developed
25.04.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>