Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last minute rethink

22.08.2007
Neuroscientists at UCL (University College London) and Ghent University have found the brain circuit involved in thinking twice and checking impulsive behaviour. The duo discovered that an area in the fronto-median cortex of the brain is activated when you begin to think ‘I’m not going to go through with this’ and stop yourself doing what you were about to do.

According to the study, published in the ‘Journal of Neuroscience’ today, this specific brain network is involved in self-control and checks and limits our desired actions.

Professor Patrick Haggard, UCL Institute of Neuroscience, said: “Many people recognise the ‘little voice inside the head’ that stops you from doing something, like pressing the send button on an angry email. We all have choices in our daily life, and we may decide not to go ahead with something we’ve planned. Quite often we have an immediate desire to perform an action, but reflecting on the wider consequences could, and sometimes should, make us cancel the action. Our study identifies the brain processes involved in that last-minute rethink about what we’re doing. These brain functions are important for human society in general: the ability to withhold an action prevents us all from being egoists, driven by our immediate desires.”

The decision you make on whether to act or not in a given situation is crucial to everyday life. Past studies have focussed on people’s ability to cancel a prepared action in response to an external signal, like a stop sign. In this study, for the first time, the participants always prepared the action, but then decided for themselves whether to go through with the action, or whether to withhold it at the last minute. This allowed the scientists to identify the brain basis of self-initiated inhibition of action.

Brain activity in the fronto-median cortex was monitored using fMRI brain-imaging while volunteers made up their minds when to push a button. Prior to the test participants were asked to change their minds occasionally by deciding against pushing the button at the last minute.

Participants were asked to indicate when they began to prepare the action by reporting the position of a clock hand. This indicated to the scientists when the inhibitory brain activity was likely to occur, on those occasions when the participants withheld the action. A small area in the anterior fronto-median cortex of the brain was active only when people inhibited an action they had previously prepared. When people prepared and actually went through with the action, this area was considerably less active.

“We wanted to identify the brain areas that show more activity when people prepare an action and then inhibit it, than when they prepare the same action and then actually make it” said Dr Marcel Brass, Ghent University.

The researchers were even able to predict to some degree how often individual volunteers inhibited actions from the brain activity in the fronto-median cortex. Those with strong activity in this area withheld actions frequently, while those with weak activity pressed the button more frequently, despite the instruction to sometimes withhold action.

Professor Haggard said: “This could be a factor in why some individuals are impulsive, while others are reluctant to act. Developments in brain imaging are bringing us ever closer to a scientific understanding of why a particular individual is the way they are. The ability to check, reconsider and withhold an action is essential given the complex social settings in which we live.”

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Real-time feedback helps save energy and water
08.02.2017 | Otto-Friedrich-Universität Bamberg

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>