Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last minute rethink

22.08.2007
Neuroscientists at UCL (University College London) and Ghent University have found the brain circuit involved in thinking twice and checking impulsive behaviour. The duo discovered that an area in the fronto-median cortex of the brain is activated when you begin to think ‘I’m not going to go through with this’ and stop yourself doing what you were about to do.

According to the study, published in the ‘Journal of Neuroscience’ today, this specific brain network is involved in self-control and checks and limits our desired actions.

Professor Patrick Haggard, UCL Institute of Neuroscience, said: “Many people recognise the ‘little voice inside the head’ that stops you from doing something, like pressing the send button on an angry email. We all have choices in our daily life, and we may decide not to go ahead with something we’ve planned. Quite often we have an immediate desire to perform an action, but reflecting on the wider consequences could, and sometimes should, make us cancel the action. Our study identifies the brain processes involved in that last-minute rethink about what we’re doing. These brain functions are important for human society in general: the ability to withhold an action prevents us all from being egoists, driven by our immediate desires.”

The decision you make on whether to act or not in a given situation is crucial to everyday life. Past studies have focussed on people’s ability to cancel a prepared action in response to an external signal, like a stop sign. In this study, for the first time, the participants always prepared the action, but then decided for themselves whether to go through with the action, or whether to withhold it at the last minute. This allowed the scientists to identify the brain basis of self-initiated inhibition of action.

Brain activity in the fronto-median cortex was monitored using fMRI brain-imaging while volunteers made up their minds when to push a button. Prior to the test participants were asked to change their minds occasionally by deciding against pushing the button at the last minute.

Participants were asked to indicate when they began to prepare the action by reporting the position of a clock hand. This indicated to the scientists when the inhibitory brain activity was likely to occur, on those occasions when the participants withheld the action. A small area in the anterior fronto-median cortex of the brain was active only when people inhibited an action they had previously prepared. When people prepared and actually went through with the action, this area was considerably less active.

“We wanted to identify the brain areas that show more activity when people prepare an action and then inhibit it, than when they prepare the same action and then actually make it” said Dr Marcel Brass, Ghent University.

The researchers were even able to predict to some degree how often individual volunteers inhibited actions from the brain activity in the fronto-median cortex. Those with strong activity in this area withheld actions frequently, while those with weak activity pressed the button more frequently, despite the instruction to sometimes withhold action.

Professor Haggard said: “This could be a factor in why some individuals are impulsive, while others are reluctant to act. Developments in brain imaging are bringing us ever closer to a scientific understanding of why a particular individual is the way they are. The ability to check, reconsider and withhold an action is essential given the complex social settings in which we live.”

Alex Brew | alfa
Further information:
http://www.ucl.ac.uk

More articles from Studies and Analyses:

nachricht Smart Data Transformation – Surfing the Big Wave
02.12.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Climate change could outpace EPA Lake Champlain protections
18.11.2016 | University of Vermont

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>