Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New study examines how rearing environment can alter navigation

Many animals, including humans, frequently face the task of getting from one place to another. Although many navigational strategies exist, all vertebrate species readily use geometric cues; things such as walls and corners to determine direction within an enclosed space. Moreover, some species such as rats and human children are so influenced by these geometric cues that they often ignore more reliable features such as a distinctive object or colored wall.

This surprising reliance on geometry has led researchers to suggest the existence of a geometric module in the brain. However, since both humans and laboratory animals typically grow up in environments not entirely made up of right angles and straight lines, the prevalent use of geometry could reflect nurture rather than nature.

A new study published in the July issue of Psychological Science, a journal of the Association for Psychological Science, is the first attempt to examine whether early exposure to strong geometric cues influences navigational strategy.

Alisha Brown, a psychology graduate student at the University of Alberta, raised fish in either a rectangular tank, or a circular tank free of angular information. Brown and her colleagues later trained the fish to swim to one particular corner of a rectangular-shaped test arena with either all white walls (geometric information only), or one colored wall (featural and geometric information).

Their results demonstrated that the ability to use geometry to aid navigation did not depend on exposure to angular geometry during rearing: in the featureless test arena, fish from both rectangular and circular rearing tanks used geometry to navigate. However, when features were present to help navigation, the circle-reared fish were more likely to depend on the feature even if it meant choosing a geometrically incorrect corner.

The researchers concluded that the ability to learn about geometry for navigation seems to be innate, but the use of geometric cues to navigate is determined by both nature and nurture. When reared in the absence of rectangular geometric structures, fish show a greater dependence on features for navigational guidance.

Jesse Erwin | EurekAlert!
Further information:

More articles from Studies and Analyses:

nachricht Rutgers-led innovation could spur faster, cheaper, nano-based manufacturing
14.02.2018 | Rutgers University

nachricht New study from the University of Halle: How climate change alters plant growth
12.01.2018 | Martin-Luther-Universität Halle-Wittenberg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>