Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clones on task serve greater good

17.08.2007
“Don’t ever change” isn’t just a romantic platitude. It’s a solid evolutionary strategy. At least if you’re among the creatures that produce scads of genetically identical offspring – like microbes, plants or water fleas. These creatures provide a chance to wonder about the clones raised in near-identical environments that turn out differently than their kin.

In this week’s Proceedings of the National Academy of Sciences, a Michigan State University zoologist joins others in reporting how the greater good of a genetic pool of identical organisms is affected when a few individuals break from the developmental pack.

Ian Dworkin, an assistant professor of zoology, worked with a on the paper “Genetics of Microenvironmental Canalization in Arabidopsis Thaliana” the group tackled the question of canalization -- a measure of the ability of a genotype to produce the same traits regardless of variability of its environment. As Dworkin puts it, “Canalization is the robustness, because in many cases it’s better to just shake off the minor fluctuations in the environment because in evolution, there are optimal traits to have, a place you want to be. Canalization prevents you from the minor screw ups along the way – eating wrong, getting too much sun. It keeps you in the zone.”

The group studied different cloned offspring of the Arabadopsis, a plant of the mustard family commonly used to test genetic questions. Arabadopsis can have many offspring that are genetically identical. Yet, just like human twins, these identical plants still have subtle individual differences. The question: Does an individual jumping on an extra bit of sunshine or rain shower to grow taller affect the group’s overall reproductive health" Dworkin paints a hypothetical family tale of two Arabadopsis families. All the offspring of plant “A” can grow up in near-identical environments, with pretty much the same water, sunshine and soil. But even in that stable home, little variations occur. One plant in the “A” family might get a few more minutes of sunshine a day, another might get more water, but they pretty much grow up to be just like their parent. The identical offspring of Plant “B” grow up the same way, except more of the plants in the “B” family go crazy with those environmental changes. Some get taller than their parents, some are stunted by those little environmental hiccoughs.

The scientific intrigue comes when scientists call a big family reunion, and discover that the “A” family all look close to alike, despite those subtle environmental differences. Family “B,” however, clearly didn’t follow the family genetic rules, with some towering over the group, and others being vertically challenged.

And like family reunions, the competition is decided as everyone compares pictures of the grandchildren. In Arabadopsis’s case, the solid Family A produces more “children” – or flowers, than the erratic Family B. “As it turns out, and perhaps not surprisingly, those genotypes that tended in general to vary more, tended to not produce as many flowers (and thus were less likely to reproduce successfully),” Dworkin said. “There definitely are costs to variation.” In addition, this study provides preliminary evidence that a well known plant development gene ERECTA may be in part responsible for some of the change in some genotypes. However, Dworkin said this conclusion requires further study.

Ian Dworkin | EurekAlert!
Further information:
http://www.msu.edu

More articles from Studies and Analyses:

nachricht Multi-year study finds 'hotspots' of ammonia over world's major agricultural areas
17.03.2017 | University of Maryland

nachricht Diabetes Drug May Improve Bone Fat-induced Defects of Fracture Healing
17.03.2017 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>