Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clones on task serve greater good

17.08.2007
“Don’t ever change” isn’t just a romantic platitude. It’s a solid evolutionary strategy. At least if you’re among the creatures that produce scads of genetically identical offspring – like microbes, plants or water fleas. These creatures provide a chance to wonder about the clones raised in near-identical environments that turn out differently than their kin.

In this week’s Proceedings of the National Academy of Sciences, a Michigan State University zoologist joins others in reporting how the greater good of a genetic pool of identical organisms is affected when a few individuals break from the developmental pack.

Ian Dworkin, an assistant professor of zoology, worked with a on the paper “Genetics of Microenvironmental Canalization in Arabidopsis Thaliana” the group tackled the question of canalization -- a measure of the ability of a genotype to produce the same traits regardless of variability of its environment. As Dworkin puts it, “Canalization is the robustness, because in many cases it’s better to just shake off the minor fluctuations in the environment because in evolution, there are optimal traits to have, a place you want to be. Canalization prevents you from the minor screw ups along the way – eating wrong, getting too much sun. It keeps you in the zone.”

The group studied different cloned offspring of the Arabadopsis, a plant of the mustard family commonly used to test genetic questions. Arabadopsis can have many offspring that are genetically identical. Yet, just like human twins, these identical plants still have subtle individual differences. The question: Does an individual jumping on an extra bit of sunshine or rain shower to grow taller affect the group’s overall reproductive health" Dworkin paints a hypothetical family tale of two Arabadopsis families. All the offspring of plant “A” can grow up in near-identical environments, with pretty much the same water, sunshine and soil. But even in that stable home, little variations occur. One plant in the “A” family might get a few more minutes of sunshine a day, another might get more water, but they pretty much grow up to be just like their parent. The identical offspring of Plant “B” grow up the same way, except more of the plants in the “B” family go crazy with those environmental changes. Some get taller than their parents, some are stunted by those little environmental hiccoughs.

The scientific intrigue comes when scientists call a big family reunion, and discover that the “A” family all look close to alike, despite those subtle environmental differences. Family “B,” however, clearly didn’t follow the family genetic rules, with some towering over the group, and others being vertically challenged.

And like family reunions, the competition is decided as everyone compares pictures of the grandchildren. In Arabadopsis’s case, the solid Family A produces more “children” – or flowers, than the erratic Family B. “As it turns out, and perhaps not surprisingly, those genotypes that tended in general to vary more, tended to not produce as many flowers (and thus were less likely to reproduce successfully),” Dworkin said. “There definitely are costs to variation.” In addition, this study provides preliminary evidence that a well known plant development gene ERECTA may be in part responsible for some of the change in some genotypes. However, Dworkin said this conclusion requires further study.

Ian Dworkin | EurekAlert!
Further information:
http://www.msu.edu

More articles from Studies and Analyses:

nachricht The personality factor: How to foster the sharing of research data
06.09.2017 | ZBW – Leibniz-Informationszentrum Wirtschaft

nachricht Europe’s Demographic Future. Where the Regions Are Heading after a Decade of Crises
10.08.2017 | Berlin-Institut für Bevölkerung und Entwicklung

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>