Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic climate study reveals impact of industrial soot

13.08.2007
Science magazine publishes report that details increase from last century

Scientists from the Desert Research Institute (DRI) and their collaborators have determined that Northern Hemisphere industrial pollution resulted in a seven-fold increase in black carbon (soot) in Arctic snow during the late 19th and early 20th centuries, according to new research into the impact of black carbon on Arctic climate forcing.

The study in the August 9th online edition of Science magazine was led by Drs. Joe McConnell and Ross Edwards—two ice core scientists from DRI—who used a new method for measuring soot in snow and ice to evaluate historical changes in soot concentrations using an ice core from the Greenland Ice Sheet. At its maximum from 1906 to 1910, estimated early summer surface climate forcing from black carbon in Arctic snow was eight times that of the pre-industrial era.

Soot reduces reflectivity of snow and ice—decreasing its albedo in scientific terms—allowing the surface to absorb more energy from the sun. Changes in highly reflective seasonal snow covers may have resulted in earlier snow melt and exposure of much darker underlying soil, rock, and sea ice throughout the Arctic—leading to warming across much of this region in the late 19th and early 20th centuries. For the Greenland ice sheet, these findings are significant because it is the largest ice mass in the northern hemisphere and darkening of the surface by soot from combustion of biomass and fossil fuels accelerates melting and increases sensitivity to warming.

In an article published in the August 9th online edition of Science magazine, a team of National Science Foundation- and NASA-funded researchers from DRI, the University of California, the University of Wisconsin, and Droplet Measurement Technologies report results of this novel ice-core analysis and modeling effort. Their measurements of deposition during the past two centuries, combined with modeling, reveal that the source of most of the black carbon landing on the ice changed from natural causes such as forest fires to industrial sources. The amount of black carbon deposited during this period increased precipitously, reaching a peak around 1910.

“Concentrations of black carbon varied significantly from 1788 to 2002 and were highly seasonal, particularly during the period before the Industrial Revolution in North America in the mid-1800s,” said lead author Joe McConnell. “Starting in about 1850, soot concentrations began to rise, particularly in winter when forest fire emissions are at a minimum,” McConnell added.

“In addition to black carbon, we measured a broad range of other chemicals at very high depth resolution in this same ice core,” said Joe McConnell. “Two of these ancillary measurements, vanillic acid and sulfur, are indicators of forest fire and industrial emissions, respectively. When we compare changes in the black carbon to changes in these other indicators, it is clear that most of the increases in black carbon in the late 19th and early 20th centuries, particularly in winter and spring, resulted from industrial emissions - probably from coal burning.”

Co-author Ross Edwards added, “In order to understand why Arctic climate is changing so rapidly at present, we need to understand how and why it has changed both before and after human activities had an influence on climate. To do this properly, we need to know the seasonal history of soot deposition and its impact on Arctic snow albedo during the past few centuries. Our results allow this component of climate change to be incorporated into predictive climate models in a more realistic way.”

By tracking the possible trajectories of major snowfall events that would have transported and deposited the black carbon to largely undeveloped Greenland, the researchers conclude that industrial areas of the United States and Canada were the most likely sources of the increased deposition during the past century. Boreal forest fires in northern and eastern Canada and the United States were the likely sources of natural black carbon found in the ice core.

“We used computer models to simulate the climate forcing impact of the observed changes in soot concentrations in Greenland snow during the past 215 years,” said co-author Mark Flanner from the University of California and now at the National Center for Atmospheric Research. Simulations also were used to extend the climate forcing results from central Greenland to the entire Arctic based on regional-scale models. From these simulations, the average impact from soot pollution over the Arctic was about double that found for central Greenland. Early summer climate forcing throughout the Arctic during and after industrialization was substantial, with changes largely attributed to winter-time pollution. In the peak period from 1906 to 1910, the warming effect of the industrial soot throughout the Arctic was estimated at eight times that during the pre-industrial period.

Greg Bortolin | EurekAlert!
Further information:
http://www.dri.edu

More articles from Studies and Analyses:

nachricht New study: How does Europe become a leading player for software and IT services?
03.04.2017 | Fraunhofer-Institut für System- und Innovationsforschung (ISI)

nachricht Reusable carbon nanotubes could be the water filter of the future, says RIT study
30.03.2017 | Rochester Institute of Technology

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>