Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study by the MUHC and McGill University opens a new door to understanding cancer

09.08.2007
An in-depth understanding of the mechanisms that trigger cancer cell growth is vital to the development of more targeted treatments for the disease.

An article published in the August 3 issue of Molecular Cell provides a key to these mechanisms that may prove crucial in the future. The paper is co-authored by Dr Morag Park, Director of the MUHC Molecular Oncology Group, and Dr Kalle Gehring, Head of the Nuclear Magnetic Resonnance Laboratory of the McGill University Biochemistry Department.

“To understand cancer, it is necessary to first understand how the molecules interact,” explains Dr. Park, who is also a Professor of oncology and biochemistry at McGill University. “In that study we have clarified the structure of some of the proteins involved and their connections, which allows us to understand the consequences of these interactions.” This is, in fact, a feat that merits close attention, because it means that researchers can now “see” elements smaller than a millionth of a millimetre!

In a cell’s interior, the function of the ubiquitin molecule is to “clean house.” It attaches itself to proteins that must disappear and triggers their degradation; in doing so, it allows a number of mechanisms to be minutely controlled. This new study reveals that ubiquitin also promotes interactions between proteins known as Cb-b. In a healthy patient, Cb-b is activated when a growth factor attaches itself to the surface of a cell, its role being to mitigate the cell proliferation and growth mechanisms induced by the factor. However, in some cancer patients this mitigation mechanism does not appear to function, partly because the ubiquitin does not attach itself correctly to the cell surface and to Cb-b. As a result, the effects of the growth factor become much more pronounced, which results in an unrestrained proliferation of cells – that can become a cancer.

“In the long term, this may serve as a basis for us to find ways to intervene in this chain reaction and discover a treatment” adds Dr. Gehring. “This new information about ubiquitin marks an important advance in our understanding of the mechanisms associated with cancer and contributes to the fight against the disease by directing us towards research avenues for new medications”.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

About McGill University

McGill University is Canada's leading research-intensive university and has earned an international reputation for scholarly achievement and scientific discovery. Founded in 1821, McGill has 21 faculties and professional schools, which offer more than 300 programs from the undergraduate to the doctoral level. McGill attracts renowned professors and researchers from around the world and top students from more than 150 countries, creating one of the most dynamic and diverse education environments in North America. There are approximately 23,000 undergraduate students and 7,000 graduate students. It is one of two Canadian members of the American Association of Universities. McGill's two campuses are located in Montreal, Canada.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 934-1934 #36419
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | MUHC
Further information:
http://www.muhc.ca/research
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht Amputees can learn to control a robotic arm with their minds
28.11.2017 | University of Chicago Medical Center

nachricht The importance of biodiversity in forests could increase due to climate change
17.11.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>