Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A study by the MUHC and McGill University opens a new door to understanding cancer

09.08.2007
An in-depth understanding of the mechanisms that trigger cancer cell growth is vital to the development of more targeted treatments for the disease.

An article published in the August 3 issue of Molecular Cell provides a key to these mechanisms that may prove crucial in the future. The paper is co-authored by Dr Morag Park, Director of the MUHC Molecular Oncology Group, and Dr Kalle Gehring, Head of the Nuclear Magnetic Resonnance Laboratory of the McGill University Biochemistry Department.

“To understand cancer, it is necessary to first understand how the molecules interact,” explains Dr. Park, who is also a Professor of oncology and biochemistry at McGill University. “In that study we have clarified the structure of some of the proteins involved and their connections, which allows us to understand the consequences of these interactions.” This is, in fact, a feat that merits close attention, because it means that researchers can now “see” elements smaller than a millionth of a millimetre!

In a cell’s interior, the function of the ubiquitin molecule is to “clean house.” It attaches itself to proteins that must disappear and triggers their degradation; in doing so, it allows a number of mechanisms to be minutely controlled. This new study reveals that ubiquitin also promotes interactions between proteins known as Cb-b. In a healthy patient, Cb-b is activated when a growth factor attaches itself to the surface of a cell, its role being to mitigate the cell proliferation and growth mechanisms induced by the factor. However, in some cancer patients this mitigation mechanism does not appear to function, partly because the ubiquitin does not attach itself correctly to the cell surface and to Cb-b. As a result, the effects of the growth factor become much more pronounced, which results in an unrestrained proliferation of cells – that can become a cancer.

“In the long term, this may serve as a basis for us to find ways to intervene in this chain reaction and discover a treatment” adds Dr. Gehring. “This new information about ubiquitin marks an important advance in our understanding of the mechanisms associated with cancer and contributes to the fight against the disease by directing us towards research avenues for new medications”.

The Research Institute of the McGill University Health Centre (RI MUHC) is a world-renowned biomedical and health-care hospital research centre. Located in Montreal, Quebec, the institute is the research arm of the MUHC, a university health center affiliated with the Faculty of Medicine at McGill University. The institute supports over 500 researchers, nearly 1000 graduate and post-doctoral students and operates more than 300 laboratories devoted to a broad spectrum of fundamental and clinical research. The Research Institute operates at the forefront of knowledge, innovation and technology and is inextricably linked to the clinical programs of the MUHC, ensuring that patients benefit directly from the latest research-based knowledge.

About McGill University

McGill University is Canada's leading research-intensive university and has earned an international reputation for scholarly achievement and scientific discovery. Founded in 1821, McGill has 21 faculties and professional schools, which offer more than 300 programs from the undergraduate to the doctoral level. McGill attracts renowned professors and researchers from around the world and top students from more than 150 countries, creating one of the most dynamic and diverse education environments in North America. There are approximately 23,000 undergraduate students and 7,000 graduate students. It is one of two Canadian members of the American Association of Universities. McGill's two campuses are located in Montreal, Canada.

For more information please contact:

Isabelle Kling
Communications Coordinator (research)
MUHC Public Relations and Communications
(514) 934-1934 #36419
isabelle.kling@muhc.mcgill.ca

Isabelle Kling | MUHC
Further information:
http://www.muhc.ca/research
http://www.mcgill.ca

More articles from Studies and Analyses:

nachricht The Great Unknown: Risk-Taking Behavior in Adolescents
19.01.2017 | Max-Planck-Institut für Bildungsforschung

nachricht A sudden drop in outdoor temperature increases the risk of respiratory infections
11.01.2017 | University of Gothenburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>